Blog

Inside the SOC

Cutting Through the Noise: An Analysis of Post-Exploitation Activity on PaperCut Servers

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
29
Aug 2023
29
Aug 2023
In mid-April 2023, Darktrace observed two related clusters of attack chains across its customer base. Further investigation revealed these clusters of activity to be related to exploitation of a critical vulnerability in the print management system, PaperCut. This blog details the observed attack chains, and Darktrace’s coverage of the steps involved in them.

Introduction

Malicious cyber actors are known to exploit vulnerabilities in Internet-facing systems and services to gain entry to organizations’ digital environments. Keeping track of the vulnerabilities which malicious actors are exploiting is seemingly futile, with malicious actors continually finding new avenues of exploitation.  

In mid-April 2023, Darktrace, along with the wider security community, observed malicious cyber actors gaining entry to networks through exploitation of a critical vulnerability in the print management system, PaperCut. Darktrace observed two types of attack chain within its customer base, one involving the deployment of payloads to facilitate crypto-mining, and the other involving the deployment of a payload to facilitate Tor-based command-and-control (C2) communication.

Walking Through the Front Door

One of the most widely abused Initial Access methods attackers use to gain entry to an organization’s digital environment is the exploitation of vulnerabilities in Internet-facing systems and services [1]. The public disclosure of a critical vulnerability in a widely used, Internet-facing service, along with a proof of concept (POC) exploit for such vulnerability, provides malicious cyber actors with a key to the front door of countless organizations. Once malicious actors are in possession of such a key, security teams are in a race against time to patch all their vulnerable systems and services. But until organizations accomplish this, the doors are left open.

This year, the security community has seen malicious actors gaining entry to networks through the exploitation of vulnerabilities in a range of services. These services include familiar suspects, such as Microsoft Exchange and ManageEngine, along with less familiar suspects, such as PaperCut. PaperCut is a system for managing and tracking printing, copying, and scanning activity within organizations. In 2021, PaperCut was used in more than 50,000 sites across over 100 countries [2], making PaperCut a widely used print management system.

In January 2023, Trend Micro’s Zero Day Initiative (ZDI) notified PaperCut of a critical RCE vulnerability, namely CVE-2023–27350, in certain versions of PaperCut NG (PaperCut’s ‘print only’ variant) and PaperCut MF (PaperCut’s ‘extended feature’ variant) [3,4]. In March 2023, PaperCut released versions of PaperCut NG and PaperCut MF containing a fix for CVE-2023–27350 [4]. Despite this, security teams observed a surge in cases of malicious actors exploiting CVE-2023–27350 to compromise PaperCut servers in April 2023 [4-10]. This trend was mirrored in Darktrace’s customer base, where a surge in compromises of PaperCut servers was observed in April 2023.

Observed Attack Chains

In mid-April 2023, Darktrace identified two related clusters of attack chains. The attack chains within the first of these clusters involved Internet-facing PaperCut servers downloading payloads with crypto-mining capabilities from the external location, 50.19.48[.]59. While the attack chains within the second of the clusters involved Internet-facing PaperCut servers downloading payloads with Tor-based C2 capabilities from 192.184.35[.]216. The attack chains within the first cluster, which were observed on April 22, 2023, will be referred to as ‘50.19.48[.]59 chains’ and the attack chains in the second cluster, observed on April 24, 2023, will be called ‘192.184.35[.]216 chains’.

Both attack chains started with highly unusual external endpoints contacting the '/SetupCompleted' endpoint of an Internet-facing PaperCut server. These requests to the ‘/SetupCompleted’ endpoint likely represented attempts to exploit CVE-2023–27350 [10].  50.19.48[.]59 chains started with exploit connections from the external endpoint, 85.106.112[.]60, whereas 192.184.35[.]216 chains started with exploit connections from Tor nodes, such as 185.34.33[.]2.

Figure 1: Darktrace’s Advanced Search data showing likely CVE-2023-27350 exploitation activity from the suspicious, external endpoint, 85.106.112[.]60.

After the exploitation step, the two attack chains took different paths. In the 50.19.48[.]59 chains, the exploitation step was followed by the affected PaperCut server making HTTP GET requests over port 82 to the rare external endpoint, 50.19.48[.]59. In the 192.184.35[.]216 chains, the exploitation step was followed by the affected PaperCut server making an HTTP GET request over port 443 to 192.184.35[.]216.

The HTTP GET requests to 50.19.48[.]59 had Target URIs such as ‘/me1.bat’, ‘/me2.bat’, ‘/dom.zip’, ‘/mazar.bat’, and ‘/mazar.zip’, whilst the HTTP GET requests to 192.184.35[.]216 had the Target URI ‘/4591187629.exe’. The User-Agent header of the GET requests to 192.184.35[.]216 indicated that that the malicious file transfers were initiated through Microsoft’s pre-installed Background Intelligent Transfer Service (BITS).

Figure 2: Darktrace’s Advanced Search data showing a PaperCut server downloading Batch and ZIP files from 50.19.48[.]59 straight after receiving likely exploit connections from 85.106.112[.]60.
Figure 3: Darktrace’s Event Log data showing a PaperCut server downloading an executable file from 192.184.35[.]216 immediately after receiving a likely exploit connection from the Tor node, 185.34.33[.]2.

Downloads from 50.19.48[.]59 were followed by cURL GET requests to 138.68.61[.]82 and then connections to external endpoints associated with the cryptocurrency miner, Mimu (as seen in Fig 4). Downloads from 192.184.35[.]216 were followed by Python-urllib GET requests to api.ipify[.]org and long connections to Tor nodes (as seen in Fig 5).  

These facts suggest that the actor behind the 50.19.48[.]59 chains were seeking to drop cryptocurrency miners on PaperCut servers, with the intention of abusing the customer’s network to carry out resource intensive and costly cryptocurrency mining activity. Meanwhile, the actors behind the 192.184.35[.]216 chains were likely attempting to establish a Tor-based C2 channel with PaperCut servers to allow actors to further communicate with compromised devices.

Figure 4: Darktrace's Event Log data showing a PaperCut contacting 50.19.48[.]59 to download payloads, and then making a cURL request to 138.68.61[.]82 before contacting a Mimu crypto-mining endpoint.
Figure 5: Darktrace’s Event Log data showing a PaperCut server contacting 192.184.35[.]216 to download a payload, and then making connections to api.ipify[.]org and several Tor nodes.

The activities ensuing from both attack chains were varied, making it difficult to ascertain whether the activities were steps of separate attack chains, or steps of the existing 50.19.48[.]59 and 192.184.35[.]216 chains. A wide variety of activities ensued from observed 50.19.48[.]59 and 192.184.35[.]216 chains, including the abuse of pre-installed tools, such as cURL, CertUtil, and PowerShell to transfer further payloads to PaperCut servers, Cobalt Strike C2 communication, Ngrok usage, Mimikatz usage, AnyDesk usage, and in one case, detonation of the LockBit ransomware strain.

Figure 6: Diagram representing the steps of observed 50.19.48[.]59 chains.
Figure 7: Diagram representing the steps of observed 192.184.35[.]215 chains.

As the PaperCut servers that were targeted by malicious actors are Internet-facing, they regularly receive connections from unusual external endpoints. The exploit connections in the 50.19.48[.]59 and 192.184.35[.]216 chains, which originated from unusual external endpoints, were therefore not detected by Darktrace DETECT™, which relies on anomaly-based methods to detect network-based steps of an intrusion.

On the other hand, the post-exploitation steps of the 50.19.48[.]59 and 192.184.35[.]216 chains yielded ample anomaly-based detections, given that they consisted of PaperCut servers displaying highly unusual behaviors. As such Darktrace DETECT was able to successfully identify multiple chains of suspicious activity, including unusual file downloads from external endpoints and beaconing activity to rare external locations.

The file downloads from 50.19.48[.]59 observed in the 50.19.48[.]59 chains caused the following Darktrace DETECT models to breach:

- Anomalous Connection / Application Protocol on Uncommon Port

- Anomalous File / Internet Facing System File Download

- Anomalous File / Script from Rare External Location

- Anomalous File / Zip or Gzip from Rare External Location

- Device / Internet Facing Device with High Priority Alert

Figure 8: Darktrace’s Event Log data showing a PaperCut server breaching several models immediately after contacting 50.19.48[.]59.

The file downloads from 192.184.35[.]216 observed in the 192.184.35[.]216 chains caused the following Darktrace DETECT models to breach:

- Anomalous File / EXE from Rare External Location

- Anomalous File / Numeric File Download

- Device / Internet Facing Device with High Priority Alert

Figure 9: Darktrace’s Event Log data showing a PaperCut server breaching several models immediately after contacting 192.184.35[.]216.

Subsequent C2, beaconing, and crypto-mining connections in the 50.19.48[.]59 chains caused the following Darktrace DETECT models to breach:

- Anomalous Connection / New User Agent to IP Without Hostname

- Anomalous Server Activity / New User Agent from Internet Facing System

- Anomalous Server Activity / Rare External from Server

- Compromise / Crypto Currency Mining Activity

- Compromise / High Priority Crypto Currency Mining

- Compromise / High Volume of Connections with Beacon Score

- Compromise / Large Number of Suspicious Failed Connections

- Compromise / SSL Beaconing to Rare Destination

- Device / Initial Breach Chain Compromise

- Device / Large Number of Model Breaches

Figure 10: Darktrace’s Event Log data showing a PaperCut server breaching models as a result of its connections to a Mimu crypto-mining endpoint.

Subsequent C2, beaconing, and Tor connections in the 192.184.35[.]216 chains caused the following Darktrace DETECT models to breach:

- Anomalous Connection / Application Protocol on Uncommon Port

- Compromise / Anomalous File then Tor

- Compromise / Beaconing Activity To External Rare

- Compromise / Possible Tor Usage

- Compromise / Slow Beaconing Activity To External Rare

- Compromise / Uncommon Tor Usage

- Device / Initial Breach Chain Compromise

Figure 11: Darktrace’s Event Log data showing a PaperCut server breaching several models as a result of its connections to Tor nodes.

Darktrace RESPOND

Darktrace RESPOND™ was not active in any of the networks affected by 192.184.35[.]216 activity, however, RESPOND was active in some of the networks affected by 50.19.48[.]59 activity.  In those environments where RESPOND was enabled in autonomous mode, observed malicious activities resulted in intervention from RESPOND, including autonomous actions like blocking connections to specific external endpoints, blocking all outgoing traffic, and restricting affected devices to a pre-established pattern of behavior.

Figure 12: Darktrace’s Event Log data showing Darktrace RESPOND automatically performing inhibitive actions on a device in response to the device’s connection to 50.19.48[.]59.
Figure 13: Darktrace’s Event Log data showing Darktrace RESPOND automatically performing inhibitive actions on a device in response to the device’s connections to a Mimu crypto-mining endpoint.

Darktrace Cyber AI Analyst

Cyber AI Analyst autonomously investigated model breaches caused by events within these 50.19.48[.]59 and 192.184.35[.]216 chains. Cyber AI Analyst created user-friendly and detailed descriptions of these events, and then linked together these descriptions into threads representing the attack chains. Darktrace DETECT thus uncovered the individual steps of the attack chains, while Cyber AI Analyst was able to piece together the individual steps and uncover the attack chains themselves.  

Figure 14: An AI Analyst Incident entry showing the first event in a 50.19.48[.]59 chain uncovered by Cyber AI Analyst.
Figure 15: An AI Analyst Incident entry showing the second event in a 50.19.48[.]59 chain uncovered by Cyber AI Analyst.
Figure 16: An AI Analyst Incident entry showing the third event in a 50.19.48[.]59 chain uncovered by Cyber AI Analyst.
Figure 17: An AI Analyst Incident entry showing the first event in a 192.184.35[.]216 chain uncovered by Cyber AI Analyst.
Figure 18: An AI Analyst Incident entry showing the second event in a 192.184.35[.]216 chain uncovered by Cyber AI Analyst.

Conclusion

The existence of critical vulnerabilities in third-party software leaves organizations at constant risk of malicious actors breaching the perimeters of their networks. This risk can be mitigated through attack surface management and regular patching. However, this does not eliminate cyber risk entirely, meaning that organizations must be prepared for the eventuality of malicious actors getting inside their digital estate.

In April 2023, Darktrace observed malicious actors breaching the perimeters of several customer networks through exploitation of a critical vulnerability in PaperCut. Darktrace DETECT observed actors exploiting PaperCut servers to conduct a wide variety of post-exploitation activities, including downloading malicious payloads associated with cryptocurrency mining or payloads with Tor-based C2 capabilities. Darktrace DETECT created numerous model breaches based on this activity which alerted then customer’s security teams early in their development, providing them with ample time to take mitigative steps.

The successful detection of this payload delivery activity, along with the crypto-mining, beaconing, and Tor C2 activities which followed, elicited Darktrace RESPOND to take autonomous inhibitive action against the ongoing activity in those environments where it was operating in autonomous response mode.

If left to unfold, these intrusions developed in a variety of ways, in some cases leading to Cobalt Strike and ransomware activity. The detection of these intrusions in their early stages thus played a vital role in preventing malicious cyber actors from causing significant disruption.

Credit to: Sam Lister, Senior SOC Analyst, Zoe Tilsiter, Senior Cyber Analyst.

Appendices

MITRE ATT&CK Mapping

Initial Access techniques:

- Exploit Public-Facing Application (T1190)

Execution techniques:

- Command and Scripting Interpreter: PowerShell (T1059.001)

Discovery techniques:

- System Network Configuration Discovery (T1016)

Command and Control techniques

- Application Layer Protocol: Web Protocols (T1071.001)

- Encrypted Channel: Asymmetric Cryptography (T1573.002)

- Ingress Tool Transfer (T1105)

- Non-Standard Port (T1571)

- Protocol Tunneling (T1572)

- Proxy: Multi-hop Proxy (T1090.003)

- Remote Access Software (T1219)

Defense Evasion techniques:

- BITS Jobs (T1197)

Impact techniques:

- Data Encrypted for Impact (T1486)

List of Indicators of Compromise (IoCs)

IoCs from 50.19.48[.]59 attack chains:

- 85.106.112[.]60

- http://50.19.48[.]59:82/me1.bat

- http://50.19.48[.]59:82/me2.bat

- http://50.19.48[.]59:82/dom.zip

- 138.68.61[.]82

- update.mimu-me[.]cyou • 102.130.112[.]157

- 34.195.77[.]216

- http://50.19.48[.]59:82/mazar.bat

- http://50.19.48[.]59:82/mazar.zip

- http://50.19.48[.]59:82/prx.bat

- http://50.19.48[.]59:82/lol.exe  

- http://77.91.85[.]117/122.exe

- windows.n1tro[.]cyou • 176.28.51[.]151

- 77.91.85[.]117

- 91.149.237[.]76

- kernel-mlclosoft[.]site • 104.21.29[.]206

- tunnel.us.ngrok[.]com • 3.134.73[.]173

- 212.113.116[.]105

- c34a54599a1fbaf1786aa6d633545a60 (JA3 client fingerprint of crypto-mining client)

IoCs from 192.184.35[.]216 attack chains:

- 185.56.83[.]83

- 185.34.33[.]2

- http://192.184.35[.]216:443/4591187629.exe

- api.ipify[.]org • 104.237.62[.]211

- www.67m4ipctvrus4cv4qp[.]com • 192.99.43[.]171

- www.ynbznxjq2sckwq3i[.]com • 51.89.106[.]29

- www.kuo2izmlm2silhc[.]com • 51.89.106[.]29

- 148.251.136[.]16

- 51.158.231[.]208

- 51.75.153[.]22

- 82.66.61[.]19

- backmainstream-ltd[.]com • 77.91.72[.]149

- 159.65.42[.]223

- 185.254.37[.]236

- http://137.184.56[.]77:443/for.ps1

- http://137.184.56[.]77:443/c.bat

- 45.88.66[.]59

- http://5.8.18[.]237/download/Load64.exe

- http://5.8.18[.]237/download/sdb64.dll

- 140e0f0cad708278ade0984528fe8493 (JA3 client fingerprint of Tor-based client)

References

[1] https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-137a

[2] https://www.papercut.com/kb/Main/PaperCutMFSolutionBrief/

[3] https://www.zerodayinitiative.com/advisories/ZDI-23-233/

[4] https://www.papercut.com/kb/Main/PO-1216-and-PO-1219

[5] https://www.trendmicro.com/en_us/research/23/d/update-now-papercut-vulnerability-cve-2023-27350-under-active-ex.html

[6] https://www.huntress.com/blog/critical-vulnerabilities-in-papercut-print-management-software

[7] https://news.sophos.com/en-us/2023/04/27/increased-exploitation-of-papercut-drawing-blood-around-the-internet/

[8] https://twitter.com/MsftSecIntel/status/1651346653901725696

[9] https://twitter.com/MsftSecIntel/status/1654610012457648129

[10] https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-131a

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Sam Lister
SOC Analyst
Book a 1-1 meeting with one of our experts
share this article
USE CASES
Nessun articolo trovato.
PRODUCT SPOTLIGHT
Nessun articolo trovato.
COre coverage

More in this series

Nessun articolo trovato.

Blog

Nessun articolo trovato.

The State of AI in Cybersecurity: The Impact of AI on Cybersecurity Solutions

Default blog imageDefault blog image
13
May 2024

About the AI Cybersecurity Report

Darktrace surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.

This blog continues the conversation from “The State of AI in Cybersecurity: Unveiling Global Insights from 1,800 Security Practitioners” which was an overview of the entire report. This blog will focus on one aspect of the overarching report, the impact of AI on cybersecurity solutions.

To access the full report, click here.

The effects of AI on cybersecurity solutions

Overwhelming alert volumes, high false positive rates, and endlessly innovative threat actors keep security teams scrambling. Defenders have been forced to take a reactive approach, struggling to keep pace with an ever-evolving threat landscape. It is hard to find time to address long-term objectives or revamp operational processes when you are always engaged in hand-to-hand combat.                  

The impact of AI on the threat landscape will soon make yesterday’s approaches untenable. Cybersecurity vendors are racing to capitalize on buyer interest in AI by supplying solutions that promise to meet the need. But not all AI is created equal, and not all these solutions live up to the widespread hype.  

Do security professionals believe AI will impact their security operations?

Yes! 95% of cybersecurity professionals agree that AI-powered solutions will level up their organization’s defenses.                                                                

Not only is there strong agreement about the ability of AI-powered cybersecurity solutions to improve the speed and efficiency of prevention, detection, response, and recovery, but that agreement is nearly universal, with more than 95% alignment.

This AI-powered future is about much more than generative AI. While generative AI can help accelerate the data retrieval process within threat detection, create quick incident summaries, automate low-level tasks in security operations, and simulate phishing emails and other attack tactics, most of these use cases were ranked lower in their impact to security operations by survey participants.

There are many other types of AI, which can be applied to many other use cases:

Supervised machine learning: Applied more often than any other type of AI in cybersecurity. Trained on attack patterns and historical threat intelligence to recognize known attacks.

Natural language processing (NLP): Applies computational techniques to process and understand human language. It can be used in threat intelligence, incident investigation, and summarization.

Large language models (LLMs): Used in generative AI tools, this type of AI applies deep learning models trained on massively large data sets to understand, summarize, and generate new content. The integrity of the output depends upon the quality of the data on which the AI was trained.

Unsupervised machine learning: Continuously learns from raw, unstructured data to identify deviations that represent true anomalies. With the correct models, this AI can use anomaly-based detections to identify all kinds of cyber-attacks, including entirely unknown and novel ones.

What are the areas of cybersecurity AI will impact the most?

Improving threat detection is the #1 area within cybersecurity where AI is expected to have an impact.                                                                                  

The most frequent response to this question, improving threat detection capabilities in general, was top ranked by slightly more than half (57%) of respondents. This suggests security professionals hope that AI will rapidly analyze enormous numbers of validated threats within huge volumes of fast-flowing events and signals. And that it will ultimately prove a boon to front-line security analysts. They are not wrong.

Identifying exploitable vulnerabilities (mentioned by 50% of respondents) is also important. Strengthening vulnerability management by applying AI to continuously monitor the exposed attack surface for risks and high-impact vulnerabilities can give defenders an edge. If it prevents threats from ever reaching the network, AI will have a major downstream impact on incident prevalence and breach risk.

Where will defensive AI have the greatest impact on cybersecurity?

Cloud security (61%), data security (50%), and network security (46%) are the domains where defensive AI is expected to have the greatest impact.        

Respondents selected broader domains over specific technologies. In particular, they chose the areas experiencing a renaissance. Cloud is the future for most organizations,
and the effects of cloud adoption on data and networks are intertwined. All three domains are increasingly central to business operations, impacting everything everywhere.

Responses were remarkably consistent across demographics, geographies, and organization sizes, suggesting that nearly all survey participants are thinking about this similarly—that AI will likely have far-reaching applications across the broadest fields, as well as fewer, more specific applications within narrower categories.

Going forward, it will be paramount for organizations to augment their cloud and SaaS security with AI-powered anomaly detection, as threat actors sharpen their focus on these targets.

How will security teams stop AI-powered threats?            

Most security stakeholders (71%) are confident that AI-powered security solutions are better able to block AI-powered threats than traditional tools.

There is strong agreement that AI-powered solutions will be better at stopping AI-powered threats (71% of respondents are confident in this), and there’s also agreement (66%) that AI-powered solutions will be able to do so automatically. This implies significant faith in the ability of AI to detect threats both precisely and accurately, and also orchestrate the correct response actions.

There is also a high degree of confidence in the ability of security teams to implement and operate AI-powered solutions, with only 30% of respondents expressing doubt. This bodes well for the acceptance of AI-powered solutions, with stakeholders saying they’re prepared for the shift.

On the one hand, it is positive that cybersecurity stakeholders are beginning to understand the terms of this contest—that is, that only AI can be used to fight AI. On the other hand, there are persistent misunderstandings about what AI is, what it can do, and why choosing the right type of AI is so important. Only when those popular misconceptions have become far less widespread can our industry advance its effectiveness.  

To access the full report, click here.

Continue reading
About the author
The Darktrace Community

Blog

Inside the SOC

Connecting the Dots: Darktrace’s Detection of the Exploitation of the ConnectWise ScreenConnect Vulnerabilities

Default blog imageDefault blog image
10
May 2024

Introduction

Across an ever changing cyber landscape, it is common place for threat actors to actively identify and exploit newly discovered vulnerabilities within commonly utilized services and applications. While attackers are likely to prioritize developing exploits for the more severe and global Common Vulnerabilities and Exposures (CVEs), they typically have the most success exploiting known vulnerabilities within the first couple years of disclosure to the public.

Addressing these vulnerabilities in a timely manner reduces the effectiveness of known vulnerabilities, decreasing the pace of malicious actor operations and forcing pursuit of more costly and time-consuming methods, such as zero-day related exploits or attacking software supply chain operations. While actors also develop tools to exploit other vulnerabilities, developing exploits for critical and publicly known vulnerabilities gives actors impactful tools at a low cost they are able to use for quite some time.

Between January and March 2024, the Darktrace Threat Research team investigated one such example that involved indicators of compromise (IoCs) suggesting the exploitation of vulnerabilities in ConnectWise’s remote monitoring and management (RMM) software ScreenConnect.

What are the ConnectWise ScreenConnect vulnerabilities?

CVE-2024-1708 is an authentication bypass vulnerability in ScreenConnect 23.9.7 (and all earlier versions) that, if exploited, would enable an attacker to execute remote code or directly impact confidential information or critical systems. This exploit would pave the way for a second ScreenConnect vunerability, CVE-2024-1709, which allows attackers to directly access confidential information or critical systems [1].

ConnectWise released a patch and automatically updated cloud versions of ScreenConnect 23.9.9, while urging security temas to update on-premise versions immediately [3].

If exploited in conjunction, these vulnerabilities could allow a malicious actor to create new administrative accounts on publicly exposed instances by evading existing security measures. This, in turn, could enable attackers to assume an administrative role and disable security tools, create backdoors, and disrupt RMM processes. Access to an organization’s environment in this manner poses serious risk, potentially leading to significant consequences such as deploying ransomware, as seen in various incidents involving the exploitation of ScreenConnect [2]

Darktrace Coverage of ConnectWise Exploitation

Darktrace’s anomaly-based detection was able to identify evidence of exploitation related to CVE-2024-1708 and CVE-2024-1709 across two distinct timelines; these detections included connectivity with endpoints that were later confirmed to be malicious by multiple open-source intelligence (OSINT) vendors. The activity observed by Darktrace suggests that threat actors were actively exploiting these vulnerabilities across multiple customer environments.

In the cases observed across the Darktrace fleet, Darktrace DETECT™ and Darktrace RESPOND™ were able to work in tandem to pre-emptively identify and contain network compromises from the onset. While Darktrace RESPOND was enabled in most customer environments affected by the ScreenConnect vulnerabilities, in the majority of cases it was configured in Human Confirmation mode. Whilst in Human Confirmation mode, RESPOND will provide recommended actions to mitigate ongoing attacks, but these actions require manual approval from human security teams.

When enabled in autonomous response mode, Darktrace RESPOND will take action automatically, shutting down suspicious activity as soon as it is detected without the need for human intervention. This is the ideal end state for RESPOND as actions can be taken at machine speed, without any delays waiting for user approval.

Looking within the patterns of activity observed by Darktrace , the typical  attack timeline included:

Darktrace observed devices on affected customer networks performing activity indicative of ConnectWise ScreenConnect usage, for example connections over 80 and 8041, connections to screenconnect[.]com, and the use of the user agent “LabTech Agent”. OSINT research suggests that this user agent is an older name for ConnectWise Automate [5] which also includes ScreenConnect as standard [6].

Darktrace DETECT model alert highlighting the use of a remote management tool, namely “screenconnect[.]com”.
Figure 1: Darktrace DETECT model alert highlighting the use of a remote management tool, namely “screenconnect[.]com”.

This activity was typically followed by anomalous connections to the external IP address 108.61.210[.]72 using URIs of the form “/MyUserName_DEVICEHOSTNAME”, as well as additional connections to another external, IP 185.62.58[.]132. Both of these external locations have since been reported as potentially malicious [14], with 185.62.58[.]132 in particular linked to ScreenConnect post-exploitation activity [2].

Figure 2: Darktrace DETECT model alert highlighting the unusual connection to 185.62.58[.]132 via port 8041.
Figure 2: Darktrace DETECT model alert highlighting the unusual connection to 185.62.58[.]132 via port 8041.
Figure 3: Darktrace DETECT model alert highlighting connections to 108.61.210[.]72 using a new user agent and the “/MyUserName_DEVICEHOSTNAME” URI.
Figure 3: Darktrace DETECT model alert highlighting connections to 108.61.210[.]72 using a new user agent and the “/MyUserName_DEVICEHOSTNAME” URI.

Same Exploit, Different Tactics?  

While the majority of instances of ConnectWise ScreenConnect exploitation observed by Darktrace followed the above pattern of activity, Darktrace was able to identify some deviations from this.

In one customer environment, Darktrace’s detection of post-exploitation activity began with the same indicators of ScreenConnect usage, including connections to screenconnect[.]com via port 8041, followed by connections to unusual domains flagged as malicious by OSINT, in this case 116.0.56[.]101 [16] [17]. However, on this deployment Darktrace also observed threat actors downloading a suspicious AnyDesk installer from the endpoint with the URI “hxxp[:]//116.0.56[.]101[:]9191/images/Distribution.exe”.

Figure 4: Darktrace DETECT model alert highlighting the download of an unusual executable file from 116.0.56[.]101.
Figure 4: Darktrace DETECT model alert highlighting the download of an unusual executable file from 116.0.56[.]101.

Further investigation by Darktrace’s Threat Research team revealed that this endpoint was associated with threat actors exploiting CVE-2024-1708 and CVE-2024-1709 [1]. Darktrace was additionally able to identify that, despite the customer being based in the United Kingdom, the file downloaded came from Pakistan. Darktrace recognized that this represented a deviation from the device’s expected pattern of activity and promptly alerted for it, bringing it to the attention of the customer.

Figure 5: External Sites Summary within the Darktrace UI pinpointing the geographic locations of external endpoints, in this case highlighting a file download from Pakistan.
Figure 5: External Sites Summary within the Darktrace UI pinpointing the geographic locations of external endpoints, in this case highlighting a file download from Pakistan.

Darktrace’s Autonomous Response

In this instance, the customer had Darktrace enabled in autonomous response mode and the post-exploitation activity was swiftly contained, preventing the attack from escalating.

As soon as the suspicious AnyDesk download was detected, Darktrace RESPOND applied targeted measures to prevent additional malicious activity. This included blocking connections to 116.0.56[.]101 and “*.56.101”, along with blocking all outgoing traffic from the device. Furthermore, RESPOND enforced a “pattern of life” on the device, restricting its activity to its learned behavior, allowing connections that are considered normal, but blocking any unusual deviations.

Figure 6: Darktrace RESPOND enforcing a “pattern of life” on the offending device after detecting the suspicious AnyDesk download.
Figure 6: Darktrace RESPOND enforcing a “pattern of life” on the offending device after detecting the suspicious AnyDesk download.
Figure 7: Darktrace RESPOND blocking connections to the suspicious endpoint 116.0.56[.]101 and “*.56.101” following the download of the suspicious AnyDesk installer.
Figure 7: Darktrace RESPOND blocking connections to the suspicious endpoint 116.0.56[.]101 and “*.56.101” following the download of the suspicious AnyDesk installer.

The customer was later able to use RESPOND to manually quarantine the offending device, ensuring that all incoming and outgoing traffic to or from the device was prohibited, thus preventing ay further malicious communication or lateral movement attempts.

Figure 8: The actions applied by Darktrace RESPOND in response to the post-exploitation activity related to the ScreenConnect vulnerabilities, including the manually applied “Quarantine device” action.

Conclusion

In the observed cases of the ConnectWise ScreenConnect vulnerabilities being exploited across the Darktrace fleet, Darktrace was able to pre-emptively identify and contain network compromises from the onset, offering vital protection against disruptive cyber-attacks.

While much of the post-exploitation activity observed by Darktrace remained the same across different customer environments, important deviations were also identified suggesting that threat actors may be adapting their tactics, techniques and procedures (TTPs) from campaign to campaign.

While new vulnerabilities will inevitably surface and threat actors will continually look for novel ways to evolve their methods, Darktrace’s Self-Learning AI and behavioral analysis offers organizations full visibility over new or unknown threats. Rather than relying on existing threat intelligence or static lists of “known bads”, Darktrace is able to detect emerging activity based on anomaly and respond to it without latency, safeguarding customer environments whilst causing minimal disruption to business operations.

Credit: Emma Foulger, Principal Cyber Analyst for their contribution to this blog.

Appendices

Darktrace Model Coverage

DETECT Models

Compromise / Agent Beacon (Medium Period)

Compromise / Agent Beacon (Long Period)

Anomalous File / EXE from Rare External Location

Device / New PowerShell User Agent

Anomalous Connection / Powershell to Rare External

Anomalous Connection / New User Agent to IP Without Hostname

User / New Admin Credentials on Client

Device / New User Agent

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Compromise / Suspicious Request Data

Compliance / Remote Management Tool On Server

Anomalous File / Anomalous Octet Stream (No User Agent)

RESPOND Models

Antigena / Network::External Threat::Antigena Suspicious File Block

Antigena / Network::External Threat::Antigena File then New Outbound Block

Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block

Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block

Antigena / Network::Significant Anomaly::Antigena Controlled and Model Breach

Antigena / Network::Insider Threat::Antigena Unusual Privileged User Activities Block

Antigena / Network / External Threat / Antigena Suspicious File Pattern of Life Block

Antigena / Network / Insider Threat / Antigena Unusual Privileged User Activities Pattern of Life Block

List of IoCs

IoC - Type - Description + Confidence

185.62.58[.]132 – IP- IP linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

108.61.210[.]72- IP - IP linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

116.0.56[.]101    - IP - IP linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

/MyUserName_ DEVICEHOSTNAME – URI - URI linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

/images/Distribution.exe – URI - URI linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

24780657328783ef50ae0964b23288e68841a421 - SHA1 Filehash - Filehash linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

a21768190f3b9feae33aaef660cb7a83 - MD5 Filehash - Filehash linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

MITRE ATT&CK Mapping

Technique – Tactic – ID - Sub-technique of

Web Protocols - COMMAND AND CONTROL - T1071.001 - T1071

Web Services      - RESOURCE DEVELOPMENT - T1583.006 - T1583

Drive-by Compromise - INITIAL ACCESS - T1189 – NA

Ingress Tool Transfer   - COMMAND AND CONTROL - T1105 - NA

Malware - RESOURCE DEVELOPMENT - T1588.001- T1588

Exploitation of Remote Services - LATERAL MOVEMENT - T1210 – NA

PowerShell – EXECUTION - T1059.001 - T1059

Pass the Hash      - DEFENSE EVASION, LATERAL MOVEMENT     - T1550.002 - T1550

Valid Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078 – NA

Man in the Browser – COLLECTION - T1185     - NA

Exploit Public-Facing Application - INITIAL ACCESS - T1190         - NA

Exfiltration Over C2 Channel – EXFILTRATION - T1041 – NA

IP Addresses – RECONNAISSANCE - T1590.005 - T1590

Remote Access Software - COMMAND AND CONTROL - T1219 – NA

Lateral Tool Transfer - LATERAL MOVEMENT - T1570 – NA

Application Layer Protocol - COMMAND AND CONTROL - T1071 – NA

References:

[1] https://unit42.paloaltonetworks.com/connectwise-threat-brief-cve-2024-1708-cve-2024-1709/  

[2] https://www.huntress.com/blog/slashandgrab-screen-connect-post-exploitation-in-the-wild-cve-2024-1709-cve-2024-1708    

[3] https://www.huntress.com/blog/a-catastrophe-for-control-understanding-the-screenconnect-authentication-bypass

[4] https://www.speedguide.net/port.php?port=8041  

[5] https://www.connectwise.com/company/announcements/labtech-now-connectwise-automate

[6] https://www.connectwise.com/solutions/software-for-internal-it/automate

[7] https://www.securityweek.com/slashandgrab-screenconnect-vulnerability-widely-exploited-for-malware-delivery/

[8] https://arcticwolf.com/resources/blog/cve-2024-1709-cve-2024-1708-follow-up-active-exploitation-and-pocs-observed-for-critical-screenconnect-vulnerabilities/https://success.trendmicro.com/dcx/s/solution/000296805?language=en_US&sfdcIFrameOrigin=null

[9] https://www.connectwise.com/company/trust/security-bulletins/connectwise-screenconnect-23.9.8

[10] https://socradar.io/critical-vulnerabilities-in-connectwise-screenconnect-postgresql-jdbc-and-vmware-eap-cve-2024-1597-cve-2024-22245/

[11] https://www.trendmicro.com/en_us/research/24/b/threat-actor-groups-including-black-basta-are-exploiting-recent-.html

[12] https://otx.alienvault.com/indicator/ip/185.62.58.132

[13] https://www.virustotal.com/gui/ip-address/185.62.58.132/community

[14] https://www.virustotal.com/gui/ip-address/108.61.210.72/community

[15] https://otx.alienvault.com/indicator/ip/108.61.210.72

[16] https://www.virustotal.com/gui/ip-address/116.0.56[.]101/community

[17] https://otx.alienvault.com/indicator/ip/116.0.56[.]101

Continue reading
About the author
Justin Torres
Cyber Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Iniziare la prova gratuita
Darktrace AI protecting a business from cyber threats.