Blog

Inside the SOC

Darktrace’s Detection of a Large-Scale Account Hijack that Led to a Phishing Attack

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
19
May 2023
19
May 2023
This blog discusses Darktrace’s detection of a large-scale SaaS compromise and the subsequent phishing attack propagating through a learning institution.

Introduction 

As malicious actors across the threat landscape continue to take advantage of the widespread adoption of Software-as-a-Service (SaaS) platforms and multi-factor authentication (MFA) services to gain unauthorized access to organizations’ networks, it is crucial to have appropriate security tools in place to defend against account compromise at the earliest stage.

One method frequently employed by attackers is account takeover. Account takeovers occur when a threat actor exploits credentials to login to a SaaS account, often from an unusual location where the genuine actor does not usually login from. 

Access to these accounts can be caused by harvesting credentials through phishing emails and password spray attacks, or by exploiting insecure cloud safety practices such as not having MFA enabled on user accounts, requiring only user credentials for authentication. Once the integrity of the account is compromised, the threat actor can conduct further activity, such as delivering malware, reading and exfiltrating sensitive data, and sending out phishing emails to harvest further internal and external user credentials, repeating the attack cycle [1,2]. 

In early 2023, Darktrace detected a large-scale account takeover and phishing attack on the network of a customer in the education sector that affected hundreds of accounts and resulted in thousands of emails being forwarded outside of the network. The exceptional degree of visibility provided by Darktrace DETECT™ allowed for the detection of adversarial activity at every stage of the kill chain, and direct support from the Darktrace Analyst team via the Ask the Expert (ATE) service ensured the customer was fully informed and equipped to implement remedial action. 

Details of Attack Chain

Darktrace observed the same pattern of activity on all hijacked accounts on the customer’s network; login from unfamiliar locations, enablement of a mail forwarding rule that forwards all incoming emails to malicious email addresses, and the sending of phishing emails followed by their deletion. 

Figure 1: Timeline of attack on hijacked SaaS accounts.

Initial Access

Darktrace DETECT first detected anomalous SaaS activity on the customer environment on January 14, 2023, and then again on February 3, when multiple SaaS accounts were observed logging in from atypical locations with rare IP addresses and geographically impossible travel timings, or logging in whilst the account owner was active elsewhere. Subsequent investigation using open-source intelligence (OSINT) sources revealed one of the IP addressed had recently been associated with brute-force or password spray attempt.

This pattern of unusual login behavior persisted throughout the timeframe of the attack, with more unique accounts generating model breaches each day for similarly anomalous logins. As MFA authentication was not enforced for these user logins, the initial intrusion process was enabled by requiring only credentials for authentication.

Sending Emails 

The compromised accounts were also seen sending out emails with the subject ‘Email HELP DESK’ to external and internal recipients. This was likely represented a threat actor employing social engineering tactics to gain the trust of the recipient by posing as an internal help desk.

Mail Forwarding

Following the successful logins, compromised accounts began creating email rules to forward mail to external email addresses, some of which were associated with domains that had hits for malicious activity according to OSINT sources [3].

  • chotunai[.]com
  • bymercy[.]com
  • breazeim[.]com
  • brandoza[.]com

Forwarding mail is a commonly observed tactic during SaaS compromises to control lines of communication. Malicious actors often attempt to insert themselves into ongoing correspondence for illicit purposes, such as exfiltrating sensitive information, gaining persistent access to the compromised email or redirecting invoice payments. 

Email Deletions

Shortly after the mail forwarding activity, compromised accounts were detected performing anomalous email deletions en masse. Further investigation revealed that these accounts had previously sent a large volume of phishing emails and this mass deletion likely represented an attempt to conceal these activities by deleting them from their outboxes.

On February 10, the customer applied a mass password reset on all accounts that Darktrace had identified as compromised and provisioned, privileged accounts with MFA. They have indicated that those measures successfully halted the compromise, addressing the initial point of entry.  

Darktrace Coverage

Using its Self-Learning AI, Darktrace effectively demonstrated its ability to detect unusual SaaS activity that could indicate that an account has been hijacked by malicious actors. Rather than relying on a traditional rules and signature-based approach, Darktrace models develop an understanding of the network itself and can instantly recognize when a compromised deviates from its expected pattern of life.

Figure 2: Detection of unusual SaaS activity on hijacked SaaS account.

Initial Access

Initial access was detected by the following models:

  • Security Integration / High Severity Integration Detection  
  • SaaS / Unusual Activity / Activity from Multiple Unusual IPs 
  • SaaS / Access / Unusual External Source for SaaS Credential Use 
  • SaaS / Compromise / Login From Rare Endpoint While User Is Active 

Initial access was also detected by the following Cyber AI Analyst Incidents:

  • Possible Hijack of Office365 Account 

The model breaches and AI Analyst incidents detected logins from 100% rare external IP addresses in conjunction with a lack of MFA usage, as depicted in Figure 3.

Figure 3: Breach log showing initial detection of a SaaS login from a 100% rare IP where MFA was not used.
Figure 4: Initial detection of unusual SaaS activity visualized in Darktrace's SaaS console.

Mail Forwarding

Mail forwarding was detected by the following models:

  • SaaS / Admin / Mail Forwarding Enabled 

Compromised accounts were largely detected configuring mail forwarding rules to external email addresses, ostensibly to establish persistence on the network and exfiltrate sensitive correspondence.

Figure 5: The enablement of mail forwarding was detected as 100% new or uncommon for the account in question.

Mass Email Deletion

Mass email deletion was detected by the following models:

  • SaaS / Compromise / Suspicious Login and Mass Email Deletes 
  • SaaS / Resource / Mass Email Deletes from Rare Location 
Figure 6: Compromised account deleting phishing emails it had previously sent from the outbox.

Darktrace detected accounts performing highly anomalous mass email deletions from rare locations. The actors deleted the email “Email HELP DESK” which was later confirmed as being the primary phishing email used in the attack. Deletions were observed on compromised accounts’ outboxes, presumably to conceal the malicious activity.

Darktrace also detected this linked pattern of activity in sequential models such as: 

  • SaaS / Compromise / Unusual Login, Sent Mail, Deleted Sent
  • SaaS / Compromise / Suspicious Login and Mass Email Deletes 

Ask the Expert

The customer used the ATE service to request more technical information and support concerning the attack. Darktrace’s 24/7 team of analysts were able to offer expert assistance and further details to assist in the subsequent investigations and remediation steps. 

Further Detection and Response  

Unfortunately, the customer did not have Darktrace/Email™ enabled at the time of the attack. Darktrace/Email has visibility over inbound and outbound mail-flow which provides an oversight on potential data loss incidents. In this case, Darktrace DETECT/Email would have been able to provide full visibility over the phishing emails sent by the compromised accounts, as well as the attackers attempts to spoof an internal helpdesk. Further to this, the new Analysis Outlook integration helps employees understand why an email is suspicious and enables them report emails directly to the security team, which helps to continuously build user awareness of phishing attacks. 

Darktrace/Email also enhances Darktrace/Network™ detections by triggering ‘Email Nexus’ models within Darktrace/Network, where malicious activity is detected across the digital estate, correlating moving from SaaS compromised logins to mass email spam being sent out by compromised users

Figure 7: Email Nexus models within the Darktrace/Network enhanced by Darktrace/Email

Darktrace RESPOND™ was not enabled on the customer environment at the time of the attack; if it were, Darktrace would have been able to autonomously take action against the SaaS model breaches detecting across multiple of the kill chain. RESPOND would have disabled the hijacked accounts or force them to log out for a period of time, whilst also disabling the inbox rules that had been established by malicious actors. This would have given the customer’s security team valuable time to analyze the incident and mitigate the situation, preventing the attack from escalating any further. 

Conclusion

Ultimately, Darktrace demonstrated its unparalleled visibility over customer networks which allowed for the detection of this large-scale targeted SaaS account takeover, and the subsequent phishing attack. It underscores the importance of defense in depth; critically, MFA was not enforced for this environment which likely made the targeted organization far more susceptible to compromise via credential theft. The phishing activity detected by Darktrace following this account compromise also highlights the need for email protection in any security stack. 

Darktrace’s visibility meant allowed it to detect the attack at a high degree of granularity, including the account logins, email forwarding rule creations, outbound mail, and the mass deletions of phishing emails. Darktrace’s anomaly-based detection means it does not have to rely on signatures, rules or known indicators of compromise (IoCs) when identifying an emerging threat, instead placing the emphasis on recognizing a user’s deviation from its normal behavior.

However, without the presence of an autonomous response technology able to instantly intervene and stop ongoing attacks, organizations will always be reacting to attacks once the damage is done. Darktrace RESPOND is uniquely placed to take action against suspicious activity as soon as it is detected, preventing attacks from escalating and saving customers from significant disruption to their business.

Credit to: Zoe Tilsiter, Cyber Analyst, Gernice Lee, Cyber Analyst.

Appendices

Models Breached

SaaS / Access / Unusual External Source for SaaS Credential Use

SaaS / Admin / Mail Forwarding Enabled

SaaS / Compliance / Microsoft Cloud App Security Alert Detected

SaaS / Compromise / SaaS Anomaly Following Anomalous Login 

SaaS / Compromise / Unusual Login, Sent Mail, Deleted Sent

SaaS / Compromise / Suspicious Login and Mass Email Deletes 

SaaS / Resource / Mass Email Deletes from Rare Location

SaaS / Unusual Activity / Multiple Unusual External Sources For SaaS Credential

SaaS / Unusual Activity / Activity from Multiple Unusual IPs

SaaS / Unusual Activity / Multiple Unusual SaaS Activities 

Security Integration / Low Severity Integration Detection

Security Integration / High Severity Integration Detection

List of IoCs

brandoza[.]com - domain - probable domain of forwarded email address

breazeim[.]com - domain - probable domain of forwarded email address

bymercy[.]com - domain - probable domain of forwarded email address

chotunai[.]com - domain - probable domain of forwarded email address

MITRE ATT&CK Mapping

Tactic: INITIAL ACCESS, PERSISTENCE, PRIVILEGE ESCILATION, DEFENSE EVASION

Technique: T1078.004 – Cloud Accounts

Tactic: COLLECTION

Technique: T1114- Email Collection

Tactic:COLLECTION

Technique: T1114.003- Email Forwarding Rule

Tactic: IMPACT

Technique: T1485- Data Destruction

Tactic: DEFENSE EVASION

Technique: T1578.003 – Delete Cloud Instance

References

[1] Darktrace, 2022, Cloud Application Security_ Protect your SaaS with Self-Learning AI.pdf

[2] https://www.cloudflare.com/en-gb/learning/access-management/account-takeover/ 

[3] https://www.virustotal.com/gui/domain/chotunai.com 

INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Zoe Tilsiter
Cyber Analyst
Book a 1-1 meeting with one of our experts
share this article
COre coverage

More in this series

Nessun articolo trovato.

Blog

Nessun articolo trovato.

The State of AI in Cybersecurity: The Impact of AI on Cybersecurity Solutions

Default blog imageDefault blog image
13
May 2024

About the AI Cybersecurity Report

Darktrace surveyed 1,800 CISOs, security leaders, administrators, and practitioners from industries around the globe. Our research was conducted to understand how the adoption of new AI-powered offensive and defensive cybersecurity technologies are being managed by organizations.

This blog continues the conversation from “The State of AI in Cybersecurity: Unveiling Global Insights from 1,800 Security Practitioners” which was an overview of the entire report. This blog will focus on one aspect of the overarching report, the impact of AI on cybersecurity solutions.

To access the full report, click here.

The effects of AI on cybersecurity solutions

Overwhelming alert volumes, high false positive rates, and endlessly innovative threat actors keep security teams scrambling. Defenders have been forced to take a reactive approach, struggling to keep pace with an ever-evolving threat landscape. It is hard to find time to address long-term objectives or revamp operational processes when you are always engaged in hand-to-hand combat.                  

The impact of AI on the threat landscape will soon make yesterday’s approaches untenable. Cybersecurity vendors are racing to capitalize on buyer interest in AI by supplying solutions that promise to meet the need. But not all AI is created equal, and not all these solutions live up to the widespread hype.  

Do security professionals believe AI will impact their security operations?

Yes! 95% of cybersecurity professionals agree that AI-powered solutions will level up their organization’s defenses.                                                                

Not only is there strong agreement about the ability of AI-powered cybersecurity solutions to improve the speed and efficiency of prevention, detection, response, and recovery, but that agreement is nearly universal, with more than 95% alignment.

This AI-powered future is about much more than generative AI. While generative AI can help accelerate the data retrieval process within threat detection, create quick incident summaries, automate low-level tasks in security operations, and simulate phishing emails and other attack tactics, most of these use cases were ranked lower in their impact to security operations by survey participants.

There are many other types of AI, which can be applied to many other use cases:

Supervised machine learning: Applied more often than any other type of AI in cybersecurity. Trained on attack patterns and historical threat intelligence to recognize known attacks.

Natural language processing (NLP): Applies computational techniques to process and understand human language. It can be used in threat intelligence, incident investigation, and summarization.

Large language models (LLMs): Used in generative AI tools, this type of AI applies deep learning models trained on massively large data sets to understand, summarize, and generate new content. The integrity of the output depends upon the quality of the data on which the AI was trained.

Unsupervised machine learning: Continuously learns from raw, unstructured data to identify deviations that represent true anomalies. With the correct models, this AI can use anomaly-based detections to identify all kinds of cyber-attacks, including entirely unknown and novel ones.

What are the areas of cybersecurity AI will impact the most?

Improving threat detection is the #1 area within cybersecurity where AI is expected to have an impact.                                                                                  

The most frequent response to this question, improving threat detection capabilities in general, was top ranked by slightly more than half (57%) of respondents. This suggests security professionals hope that AI will rapidly analyze enormous numbers of validated threats within huge volumes of fast-flowing events and signals. And that it will ultimately prove a boon to front-line security analysts. They are not wrong.

Identifying exploitable vulnerabilities (mentioned by 50% of respondents) is also important. Strengthening vulnerability management by applying AI to continuously monitor the exposed attack surface for risks and high-impact vulnerabilities can give defenders an edge. If it prevents threats from ever reaching the network, AI will have a major downstream impact on incident prevalence and breach risk.

Where will defensive AI have the greatest impact on cybersecurity?

Cloud security (61%), data security (50%), and network security (46%) are the domains where defensive AI is expected to have the greatest impact.        

Respondents selected broader domains over specific technologies. In particular, they chose the areas experiencing a renaissance. Cloud is the future for most organizations,
and the effects of cloud adoption on data and networks are intertwined. All three domains are increasingly central to business operations, impacting everything everywhere.

Responses were remarkably consistent across demographics, geographies, and organization sizes, suggesting that nearly all survey participants are thinking about this similarly—that AI will likely have far-reaching applications across the broadest fields, as well as fewer, more specific applications within narrower categories.

Going forward, it will be paramount for organizations to augment their cloud and SaaS security with AI-powered anomaly detection, as threat actors sharpen their focus on these targets.

How will security teams stop AI-powered threats?            

Most security stakeholders (71%) are confident that AI-powered security solutions are better able to block AI-powered threats than traditional tools.

There is strong agreement that AI-powered solutions will be better at stopping AI-powered threats (71% of respondents are confident in this), and there’s also agreement (66%) that AI-powered solutions will be able to do so automatically. This implies significant faith in the ability of AI to detect threats both precisely and accurately, and also orchestrate the correct response actions.

There is also a high degree of confidence in the ability of security teams to implement and operate AI-powered solutions, with only 30% of respondents expressing doubt. This bodes well for the acceptance of AI-powered solutions, with stakeholders saying they’re prepared for the shift.

On the one hand, it is positive that cybersecurity stakeholders are beginning to understand the terms of this contest—that is, that only AI can be used to fight AI. On the other hand, there are persistent misunderstandings about what AI is, what it can do, and why choosing the right type of AI is so important. Only when those popular misconceptions have become far less widespread can our industry advance its effectiveness.  

To access the full report, click here.

Continue reading
About the author
The Darktrace Community

Blog

Inside the SOC

Connecting the Dots: Darktrace’s Detection of the Exploitation of the ConnectWise ScreenConnect Vulnerabilities

Default blog imageDefault blog image
10
May 2024

Introduction

Across an ever changing cyber landscape, it is common place for threat actors to actively identify and exploit newly discovered vulnerabilities within commonly utilized services and applications. While attackers are likely to prioritize developing exploits for the more severe and global Common Vulnerabilities and Exposures (CVEs), they typically have the most success exploiting known vulnerabilities within the first couple years of disclosure to the public.

Addressing these vulnerabilities in a timely manner reduces the effectiveness of known vulnerabilities, decreasing the pace of malicious actor operations and forcing pursuit of more costly and time-consuming methods, such as zero-day related exploits or attacking software supply chain operations. While actors also develop tools to exploit other vulnerabilities, developing exploits for critical and publicly known vulnerabilities gives actors impactful tools at a low cost they are able to use for quite some time.

Between January and March 2024, the Darktrace Threat Research team investigated one such example that involved indicators of compromise (IoCs) suggesting the exploitation of vulnerabilities in ConnectWise’s remote monitoring and management (RMM) software ScreenConnect.

What are the ConnectWise ScreenConnect vulnerabilities?

CVE-2024-1708 is an authentication bypass vulnerability in ScreenConnect 23.9.7 (and all earlier versions) that, if exploited, would enable an attacker to execute remote code or directly impact confidential information or critical systems. This exploit would pave the way for a second ScreenConnect vunerability, CVE-2024-1709, which allows attackers to directly access confidential information or critical systems [1].

ConnectWise released a patch and automatically updated cloud versions of ScreenConnect 23.9.9, while urging security temas to update on-premise versions immediately [3].

If exploited in conjunction, these vulnerabilities could allow a malicious actor to create new administrative accounts on publicly exposed instances by evading existing security measures. This, in turn, could enable attackers to assume an administrative role and disable security tools, create backdoors, and disrupt RMM processes. Access to an organization’s environment in this manner poses serious risk, potentially leading to significant consequences such as deploying ransomware, as seen in various incidents involving the exploitation of ScreenConnect [2]

Darktrace Coverage of ConnectWise Exploitation

Darktrace’s anomaly-based detection was able to identify evidence of exploitation related to CVE-2024-1708 and CVE-2024-1709 across two distinct timelines; these detections included connectivity with endpoints that were later confirmed to be malicious by multiple open-source intelligence (OSINT) vendors. The activity observed by Darktrace suggests that threat actors were actively exploiting these vulnerabilities across multiple customer environments.

In the cases observed across the Darktrace fleet, Darktrace DETECT™ and Darktrace RESPOND™ were able to work in tandem to pre-emptively identify and contain network compromises from the onset. While Darktrace RESPOND was enabled in most customer environments affected by the ScreenConnect vulnerabilities, in the majority of cases it was configured in Human Confirmation mode. Whilst in Human Confirmation mode, RESPOND will provide recommended actions to mitigate ongoing attacks, but these actions require manual approval from human security teams.

When enabled in autonomous response mode, Darktrace RESPOND will take action automatically, shutting down suspicious activity as soon as it is detected without the need for human intervention. This is the ideal end state for RESPOND as actions can be taken at machine speed, without any delays waiting for user approval.

Looking within the patterns of activity observed by Darktrace , the typical  attack timeline included:

Darktrace observed devices on affected customer networks performing activity indicative of ConnectWise ScreenConnect usage, for example connections over 80 and 8041, connections to screenconnect[.]com, and the use of the user agent “LabTech Agent”. OSINT research suggests that this user agent is an older name for ConnectWise Automate [5] which also includes ScreenConnect as standard [6].

Darktrace DETECT model alert highlighting the use of a remote management tool, namely “screenconnect[.]com”.
Figure 1: Darktrace DETECT model alert highlighting the use of a remote management tool, namely “screenconnect[.]com”.

This activity was typically followed by anomalous connections to the external IP address 108.61.210[.]72 using URIs of the form “/MyUserName_DEVICEHOSTNAME”, as well as additional connections to another external, IP 185.62.58[.]132. Both of these external locations have since been reported as potentially malicious [14], with 185.62.58[.]132 in particular linked to ScreenConnect post-exploitation activity [2].

Figure 2: Darktrace DETECT model alert highlighting the unusual connection to 185.62.58[.]132 via port 8041.
Figure 2: Darktrace DETECT model alert highlighting the unusual connection to 185.62.58[.]132 via port 8041.
Figure 3: Darktrace DETECT model alert highlighting connections to 108.61.210[.]72 using a new user agent and the “/MyUserName_DEVICEHOSTNAME” URI.
Figure 3: Darktrace DETECT model alert highlighting connections to 108.61.210[.]72 using a new user agent and the “/MyUserName_DEVICEHOSTNAME” URI.

Same Exploit, Different Tactics?  

While the majority of instances of ConnectWise ScreenConnect exploitation observed by Darktrace followed the above pattern of activity, Darktrace was able to identify some deviations from this.

In one customer environment, Darktrace’s detection of post-exploitation activity began with the same indicators of ScreenConnect usage, including connections to screenconnect[.]com via port 8041, followed by connections to unusual domains flagged as malicious by OSINT, in this case 116.0.56[.]101 [16] [17]. However, on this deployment Darktrace also observed threat actors downloading a suspicious AnyDesk installer from the endpoint with the URI “hxxp[:]//116.0.56[.]101[:]9191/images/Distribution.exe”.

Figure 4: Darktrace DETECT model alert highlighting the download of an unusual executable file from 116.0.56[.]101.
Figure 4: Darktrace DETECT model alert highlighting the download of an unusual executable file from 116.0.56[.]101.

Further investigation by Darktrace’s Threat Research team revealed that this endpoint was associated with threat actors exploiting CVE-2024-1708 and CVE-2024-1709 [1]. Darktrace was additionally able to identify that, despite the customer being based in the United Kingdom, the file downloaded came from Pakistan. Darktrace recognized that this represented a deviation from the device’s expected pattern of activity and promptly alerted for it, bringing it to the attention of the customer.

Figure 5: External Sites Summary within the Darktrace UI pinpointing the geographic locations of external endpoints, in this case highlighting a file download from Pakistan.
Figure 5: External Sites Summary within the Darktrace UI pinpointing the geographic locations of external endpoints, in this case highlighting a file download from Pakistan.

Darktrace’s Autonomous Response

In this instance, the customer had Darktrace enabled in autonomous response mode and the post-exploitation activity was swiftly contained, preventing the attack from escalating.

As soon as the suspicious AnyDesk download was detected, Darktrace RESPOND applied targeted measures to prevent additional malicious activity. This included blocking connections to 116.0.56[.]101 and “*.56.101”, along with blocking all outgoing traffic from the device. Furthermore, RESPOND enforced a “pattern of life” on the device, restricting its activity to its learned behavior, allowing connections that are considered normal, but blocking any unusual deviations.

Figure 6: Darktrace RESPOND enforcing a “pattern of life” on the offending device after detecting the suspicious AnyDesk download.
Figure 6: Darktrace RESPOND enforcing a “pattern of life” on the offending device after detecting the suspicious AnyDesk download.
Figure 7: Darktrace RESPOND blocking connections to the suspicious endpoint 116.0.56[.]101 and “*.56.101” following the download of the suspicious AnyDesk installer.
Figure 7: Darktrace RESPOND blocking connections to the suspicious endpoint 116.0.56[.]101 and “*.56.101” following the download of the suspicious AnyDesk installer.

The customer was later able to use RESPOND to manually quarantine the offending device, ensuring that all incoming and outgoing traffic to or from the device was prohibited, thus preventing ay further malicious communication or lateral movement attempts.

Figure 8: The actions applied by Darktrace RESPOND in response to the post-exploitation activity related to the ScreenConnect vulnerabilities, including the manually applied “Quarantine device” action.

Conclusion

In the observed cases of the ConnectWise ScreenConnect vulnerabilities being exploited across the Darktrace fleet, Darktrace was able to pre-emptively identify and contain network compromises from the onset, offering vital protection against disruptive cyber-attacks.

While much of the post-exploitation activity observed by Darktrace remained the same across different customer environments, important deviations were also identified suggesting that threat actors may be adapting their tactics, techniques and procedures (TTPs) from campaign to campaign.

While new vulnerabilities will inevitably surface and threat actors will continually look for novel ways to evolve their methods, Darktrace’s Self-Learning AI and behavioral analysis offers organizations full visibility over new or unknown threats. Rather than relying on existing threat intelligence or static lists of “known bads”, Darktrace is able to detect emerging activity based on anomaly and respond to it without latency, safeguarding customer environments whilst causing minimal disruption to business operations.

Credit: Emma Foulger, Principal Cyber Analyst for their contribution to this blog.

Appendices

Darktrace Model Coverage

DETECT Models

Compromise / Agent Beacon (Medium Period)

Compromise / Agent Beacon (Long Period)

Anomalous File / EXE from Rare External Location

Device / New PowerShell User Agent

Anomalous Connection / Powershell to Rare External

Anomalous Connection / New User Agent to IP Without Hostname

User / New Admin Credentials on Client

Device / New User Agent

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Compromise / Suspicious Request Data

Compliance / Remote Management Tool On Server

Anomalous File / Anomalous Octet Stream (No User Agent)

RESPOND Models

Antigena / Network::External Threat::Antigena Suspicious File Block

Antigena / Network::External Threat::Antigena File then New Outbound Block

Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block

Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block

Antigena / Network::Significant Anomaly::Antigena Controlled and Model Breach

Antigena / Network::Insider Threat::Antigena Unusual Privileged User Activities Block

Antigena / Network / External Threat / Antigena Suspicious File Pattern of Life Block

Antigena / Network / Insider Threat / Antigena Unusual Privileged User Activities Pattern of Life Block

List of IoCs

IoC - Type - Description + Confidence

185.62.58[.]132 – IP- IP linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

108.61.210[.]72- IP - IP linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

116.0.56[.]101    - IP - IP linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

/MyUserName_ DEVICEHOSTNAME – URI - URI linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

/images/Distribution.exe – URI - URI linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

24780657328783ef50ae0964b23288e68841a421 - SHA1 Filehash - Filehash linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

a21768190f3b9feae33aaef660cb7a83 - MD5 Filehash - Filehash linked with threat actors exploiting CVE-2024-1708 and CVE-2024-17091

MITRE ATT&CK Mapping

Technique – Tactic – ID - Sub-technique of

Web Protocols - COMMAND AND CONTROL - T1071.001 - T1071

Web Services      - RESOURCE DEVELOPMENT - T1583.006 - T1583

Drive-by Compromise - INITIAL ACCESS - T1189 – NA

Ingress Tool Transfer   - COMMAND AND CONTROL - T1105 - NA

Malware - RESOURCE DEVELOPMENT - T1588.001- T1588

Exploitation of Remote Services - LATERAL MOVEMENT - T1210 – NA

PowerShell – EXECUTION - T1059.001 - T1059

Pass the Hash      - DEFENSE EVASION, LATERAL MOVEMENT     - T1550.002 - T1550

Valid Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078 – NA

Man in the Browser – COLLECTION - T1185     - NA

Exploit Public-Facing Application - INITIAL ACCESS - T1190         - NA

Exfiltration Over C2 Channel – EXFILTRATION - T1041 – NA

IP Addresses – RECONNAISSANCE - T1590.005 - T1590

Remote Access Software - COMMAND AND CONTROL - T1219 – NA

Lateral Tool Transfer - LATERAL MOVEMENT - T1570 – NA

Application Layer Protocol - COMMAND AND CONTROL - T1071 – NA

References:

[1] https://unit42.paloaltonetworks.com/connectwise-threat-brief-cve-2024-1708-cve-2024-1709/  

[2] https://www.huntress.com/blog/slashandgrab-screen-connect-post-exploitation-in-the-wild-cve-2024-1709-cve-2024-1708    

[3] https://www.huntress.com/blog/a-catastrophe-for-control-understanding-the-screenconnect-authentication-bypass

[4] https://www.speedguide.net/port.php?port=8041  

[5] https://www.connectwise.com/company/announcements/labtech-now-connectwise-automate

[6] https://www.connectwise.com/solutions/software-for-internal-it/automate

[7] https://www.securityweek.com/slashandgrab-screenconnect-vulnerability-widely-exploited-for-malware-delivery/

[8] https://arcticwolf.com/resources/blog/cve-2024-1709-cve-2024-1708-follow-up-active-exploitation-and-pocs-observed-for-critical-screenconnect-vulnerabilities/https://success.trendmicro.com/dcx/s/solution/000296805?language=en_US&sfdcIFrameOrigin=null

[9] https://www.connectwise.com/company/trust/security-bulletins/connectwise-screenconnect-23.9.8

[10] https://socradar.io/critical-vulnerabilities-in-connectwise-screenconnect-postgresql-jdbc-and-vmware-eap-cve-2024-1597-cve-2024-22245/

[11] https://www.trendmicro.com/en_us/research/24/b/threat-actor-groups-including-black-basta-are-exploiting-recent-.html

[12] https://otx.alienvault.com/indicator/ip/185.62.58.132

[13] https://www.virustotal.com/gui/ip-address/185.62.58.132/community

[14] https://www.virustotal.com/gui/ip-address/108.61.210.72/community

[15] https://otx.alienvault.com/indicator/ip/108.61.210.72

[16] https://www.virustotal.com/gui/ip-address/116.0.56[.]101/community

[17] https://otx.alienvault.com/indicator/ip/116.0.56[.]101

Continue reading
About the author
Justin Torres
Cyber Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Iniziare la prova gratuita
Darktrace AI protecting a business from cyber threats.