Blog
PREVENT
PREVENT Use Cases: Uncovering Misconfigurations



During an initial demo with a water management company, Darktrace PREVENT found an industrial control system exposed to the internet. Immediately, the organization went into incident response mode because this system was mission critical and could potentially impact the water facilities, as it had the power to adjust water flow. This asset was exposed because of a simple misconfiguration, highlighting to the customer the need for proactive monitoring of its attack surface. In this case, the engineer who set up the system had simply not noticed the mistake, but these scenarios could be more dangerous and more likely if insider threat is involved.
Misconfigurations arise when vital security settings are either not applied or applied incorrectly. Such misconfigurations produce vulnerable security openings that can be exploited by attackers to either gain a foothold in the asset or generate a more dangerous attack, like altering water flow or deploying ransomware. There is a wide variety of assets that are subject to potential misconfigurations, including web or application servers, cloud containers, custom code, network devices like desktops or servers, and entire databases.
Unfortunately, the pervasiveness of misconfigurations is only increasing. In the past 12 months, there has been a 310% increase in hackers reporting misconfiguration vulnerabilities to the HackerOne platform.
Every digital environment has its own characteristics that alter the prevalence or the impact of misconfigurations. For example, industrial devices that support critical infrastructure are all the more sensitive to these types of changes, as these devices often have limited integrated security, despite their highly delicate functions. Because with every vendor and device has its own recommended configuration, security teams must take additional precautions.
In cloud environments, the ease of deployment and increased capabilities also tend to produce more misconfigurations. Digital footprints are growing at such a pace that security departments may opt to skip onboarding processes of technologies to avoid becoming an obstacle for the business. It has become so easy for any department, regardless of their technical knowledge, to add cloud applications, software, or even hardware to the company's architecture. This is why shadow IT is so troublesome: it's impossible for the security team to ensure something is well configured if they don’t even know it exists.
In addition, due to rapid growth, security and IT teams aren’t experts in every technology included within the enterprise architecture. So, the teams may do their best to apply security controls while being unaware the current configuration is a misconfiguration. With digital assets’ constant evolution, they may even be configured correctly at one point but become misconfigured in the future if not updated.
Mitigating Misconfiguration
It’s human nature that we make mistakes, and the more assets and third parties that are introduced, the more mistakes are possible. However, there are certain steps organizations can take towards reducing the frequency and the impact of misconfigurations.
Any organization needs to have discovery processes to maintain an updated inventory of their assets, and should categorize these assets based on their exposure as well as their criticality to the business. This information should feed into the organization’s risk analysis, which in turn informs the priority of mitigation actions or controls. This process, when done manually, can be long and arduous, and is not continuous: as organizations’ digital footprints are evolving so rapidly, these analyses can become obsolete quickly.
On the other hand, organizations must also monitor the activity of these assets and not just assess them at face value. As with anything in security, security teams need to be weary of the symptoms. Inappropriate configurations will often generate alerts such as slow performance, multiple suspicious login attempts, bloatware, unexpected application behavior such as redirects or shutdowns.
The Power of PREVENT
Misconfigurations are easier to identify, prioritize and remediate with an AI solution that provides continuous analysis of the organization’s external and internal attack surface. Darktrace PREVENT – consisting of PREVENT/Attack Surface Management (ASM) and PREVENT/End-to-End (E2E) – achieve exactly this.
With ASM, security teams gain visibility of the entire external attack surface, including elusive assets like shadow IT and legacy devices. It frequently uncovers misconfigurations and recommends how to mitigate the risks caused by them. Some examples include email spoofing, no SPF records, no DKIM records, no DMARC records, subdomain takeover possible, and missing routes for netblocks.
The truly unique aspect of a Self-Learning technology is that security teams receive notifications tailored to the precise assets within their architectures. In other words, the tool will only provide the misconfiguration recommendations for the specific assets that require it, instead of having to reverse engineer state-of-the-art security and then trying to see where it can apply within the organization. With Darktrace, security teams are already getting that information directly. In fact, it doesn’t stop there, as PREVENT can then prioritize the misconfigurations by the risk inherited. The security team only has to check the list of misconfigurations in order of priority and take action on them.
From an internal perspective, PREVENT/E2E will map those misconfigurations to potential attack paths, answering the question of what damage each misconfiguration can lead to and more importantly how: an attacker could go from that initial misconfiguration through each lateral movement, whether it is via a device or a user, and then reach the most critical devices within the infrastructure.
Often in security, the focus can drift to the latest tactics and techniques being used by large Advanced Persistent Threats, but a simple misconfiguration caused by a rushed or distracted employee can pose an equally large threat. An innocent mistake can often open an even larger weakness in the digital architecture, as the attacker doesn’t have to force to open the window to break in.
Like this and want more?
Blog
Inside the SOC
How Abuse of ‘PerfectData Software’ May Create a Perfect Storm: An Emerging Trend in Account Takeovers


Amidst the ever-changing threat landscape, new tactics, techniques, and procedures (TTPs) seem to emerge daily, creating extreme challenges for security teams. The broad range of attack methods utilized by attackers seems to present an insurmountable problem: how do you defend against a playbook that does not yet exist?
Faced with the growing number of novel and uncommon attack methods, it is essential for organizations to adopt a security solution able to detect threats based on their anomalies, rather than relying on threat intelligence alone.
In March 2023, Darktrace observed an emerging trend in the use of an application known as ‘PerfectData Software’ for probable malicious purposes in several Microsoft 365 account takeovers.
Using its anomaly-based detection, Darktrace DETECT™ was able to identify the activity chain surrounding the use of this application, potentially uncovering a novel piece of threat actor tradecraft in the process.
Microsoft 365 Intrusions
In recent years, Microsoft’s Software-as-a-Service (SaaS) suite, Microsoft 365, along with its built-in identity and access management (IAM) service, Azure Active Directory (Azure AD), have been heavily targeted by threat actors due to their near-ubiquitous usage across industries. Four out of every five Fortune 500 companies, for example, use Microsoft 365 services [1].
Malicious actors typically gain entry to organizations’ Microsoft 365 environments by abusing either stolen account credentials or stolen session cookies [2]. Once inside, actors can access sensitive data within mailboxes or SharePoint repositories, and send out emails or Teams messages. This activity can often result in serious financial harm, especially in cases where the malicious actor’s end-goal is to elicit fraudulent transactions.
Darktrace regularly observes malicious actors behaving in predictable ways once they gain access to customer Microsoft 365 environment. One typical example is the creation of new inbox rules and sending deceitful emails intended to convince recipients to carry out subsequent actions, such as following a malicious link or providing sensitive information. It is also common for actors to register new applications in Azure AD so that they can be used to conduct follow-up activities, like mass-mailing or data theft. The registration of applications in Azure AD therefore seems to be a relatively predictable threat actor behavior [3][4]. Darktrace DETECT understands that unusual application registrations in Azure AD may constitute a deviation in expected behavior, and therefore a possible indicator of account compromise.
These registrations of applications in Azure AD are evidenced by creations of, as well as assignments of permissions to, Service Principals in Azure AD. Darktrace has detected a growing trend in actors creating and assigning permissions to a Service Principal named ‘PerfectData Software’. Further investigation of this Azure AD activity revealed it to be part of an ongoing account takeover.
‘PerfectData Software’ Activity
Darktrace observed variations of the following pattern of activity relating to an application named ‘PerfectData Software’ within its customer base:
- Actor signs in to a Microsoft 365 account from an endpoint associated with a Virtual Private Server (VPS) or Virtual Private Network (VPN) service
- Actor registers an application called 'PerfectData Software' with Azure AD, and then grants permissions to the application
- Actor accesses mailbox data and creates inbox rule
In two separate incidents, malicious actors were observed conducting their activities from endpoints associated with VPN services (HideMyAss (HMA) VPN and Surfshark VPN, respectively) and from endpoints within the Autonomous System AS396073 MAJESTIC-HOSTING-01.
In March 2023, Darktrace observed a malicious actor signing in to a Microsoft 365 account from a Kuwait-based IP address within the Autonomous System, AS198605 AVAST Software s.r.o. This IP address is associated with the VPN service, HMA VPN. Over the next couple of days, an actor (likely the same malicious actor) signed in to the account several more times from two different Nigeria-based endpoints, as well as a VPS-related endpoint and a HMA VPN endpoint.
During their login sessions, the actor performed a variety of actions. First, they created and assigned permissions to a Service Principal named ‘PerfectData Software’. This Service Principal creation represents the registration of an application called ‘PerfectData Software’ in Azure AD. Although the reason for registering this application is unclear, within a few days the actor registered and granted permission to another application, ‘Newsletter Software Supermailer’, and created a new inbox rule names ‘s’ on the mailbox of the hijacked account. This inbox rule moved emails meeting certain conditions to a folder named ‘RSS Subscription. The ‘Newsletter Software Supermailer’ application was likely registered by the actor to facilitate mass-mailing activity.
Immediately after these actions, Darktrace detected the actor sending out thousands of malicious emails from the account. The emails included an attachment named ‘Credit Transfer Copy.html’, which contained a suspicious link. Further investigation revealed that the customer’s network had received several fake invoice emails prior to this initial intrusion activity. Additionally, there was an unusually high volume of failed logins to the compromised account around the time of the initial access.

In a separate case also observed by Darktrace in March 2023, a malicious actor was observed signing in to a Microsoft 365 account from an endpoint within the Autonomous System, AS397086 LAYER-HOST-HOUSTON. The endpoint appears to be related to the VPN service, Surfshark VPN. This login was followed by several failed and successful logins from a VPS-related within the Autonomous System, AS396073 MAJESTIC-HOSTING-01. The actor was then seen registering and assigning permissions to an application called ‘PerfectData Software’. As with the previous example, the motives for this registration are unclear. The actor proceeded to log in several more times from a Surfshark VPN endpoint, however, they were not observed carrying out any further suspicious activity.

It was not clear in either of these examples, nor in fact any of cases observed by Darktrace, why actors had registered and assigned permissions to an application called ‘PerfectData Software’, and there do not appear to be any open-source intelligence (OSINT) resources or online literature related to the malicious usage of an application by that name. That said, there are several websites which appear to provide email migration and data recovery/backup tools under the moniker ‘PerfectData Software’.
It is unclear whether the use of ‘PerfectData Software’ by malicious actors observed on the networks of Darktrace customers was one of these tools. However, given the nature of the tools, it is possible that the actors intended to use them to facilitate the exfiltration of email data from compromises mailboxes.
If the legitimate software ‘PerfectData’ is the application in question in these incidents, it is likely being purchased and misused by attackers for malicious purposes. It is also possible the application referenced in the incidents is a spoof of the legitimate ‘PerfectData’ software designed to masquerade a malicious application as legitimate.
Darktrace Coverage
Cases of ‘PerfectData Software’ activity chains detected by Darktrace typically began with an actor signing into an internal user’s Microsoft 365 account from a VPN or VPS-related endpoint. These login events, along with the suspicious email and/or brute-force activity which preceded them, caused the following DETECT models to breach:
- SaaS / Access / Unusual External Source for SaaS Credential Use
- SaaS / Access / Suspicious Login Attempt
- SaaS / Compromise / Login From Rare Following Suspicious Login Attempt(s)
- SaaS / Email Nexus / Unusual Location for SaaS and Email Activity
Subsequent activities, including inbox rule creations, registration of applications in Azure AD, and mass-mailing activity, resulted in breaches of the following DETECT models.
- SaaS / Admin / OAuth Permission Grant
- SaaS / Compromise / Unusual Logic Following OAuth Grant
- SaaS / Admin / New Application Service Principal
- IaaS / Admin / Azure Application Administration Activities
- SaaS / Compliance / New Email Rule
- SaaS / Compromise / Unusual Login and New Email Rule
- SaaS / Email Nexus / Suspicious Internal Exchange Activity
- SaaS / Email Nexus / Possible Outbound Email Spam
- SaaS / Compromise / Unusual Login and Outbound Email Spam
- SaaS / Compromise / Suspicious Login and Suspicious Outbound Email(s)

In cases where Darktrace RESPOND™ was enabled in autonomous response mode, ‘PerfectData Software’ activity chains resulted in breaches of the following RESPOND models:
• Antigena / SaaS / Antigena Suspicious SaaS Activity Block
• Antigena / SaaS / Antigena Significant Compliance Activity Block
In response to these model breaches, Darktrace RESPOND took immediate action, performing aggressive, inhibitive actions, such as forcing the actor to log out of the SaaS platform, and disabling the user entirely. When applied autonomously, these RESPOND actions would seriously impede an attacker’s progress and minimize network disruption.

In addition, Darktrace Cyber AI Analyst was able to autonomously investigate registrations of the ‘PerfectData Software’ application and summarized its findings into digestible reports.

Conclusion
Due to the widespread adoption of Microsoft 365 services in the workplace and continued emphasis on a remote workforce, account hijackings now pose a more serious threat to organizations around the world than ever before. The cases discussed here illustrate the tendency of malicious actors to conduct their activities from endpoints associated with VPN services, while also registering new applications, like PerfectData Software, with malicious intent.
While it was unclear exactly why the malicious actors were using ‘PerfectData Software’ as part of their account hijacking, it is clear that either the legitimate or spoofed version of the application is becoming an very likely emergent piece of threat actor tradecraft.
Darktrace DETECT’s anomaly-based approach to threat detection allowed it to recognize that the use of ‘PerfectData Software’ represented a deviation in the SaaS user’s expected behavior. While Darktrace RESPOND, when enabled in autonomous response mode, was able to quickly take preventative action against threat actors, blocking the potential use of the application for data exfiltration or other nefarious purposes.
Appendices
MITRE ATT&CK Mapping
Reconnaissance:
• T1598 – Phishing for Information
Credential Access:
• T1110 – Brute Force
Initial Access:
• T1078.004 – Valid Accounts: Cloud Accounts
Command and Control:
• T1105 – Ingress Tool Transfer
Persistence:
• T1098.003 – Account Manipulation: Additional Cloud Roles
Collection:
• T1114 – Email Collection
Defense Evasion:
• T1564.008 – Hide Artifacts: Email Hiding Rules
Lateral Movement:
• T1534 – Internal Spearphishing
Unusual Source IPs
• 5.62.60[.]202 (AS198605 AVAST Software s.r.o.)
• 160.152.10[.]215 (AS37637 Smile-Nigeria-AS)
• 197.244.250[.]155 (AS37705 TOPNET)
• 169.159.92[.]36 (AS37122 SMILE)
• 45.62.170[.]237 (AS396073 MAJESTIC-HOSTING-01)
• 92.38.180[.]49 (AS202422 G-Core Labs S.A)
• 129.56.36[.]26 (AS327952 AS-NATCOM)
• 92.38.180[.]47 (AS202422 G-Core Labs S.A.)
• 107.179.20[.]214 (AS397086 LAYER-HOST-HOUSTON)
• 45.62.170[.]31 (AS396073 MAJESTIC-HOSTING-01)
References
[1] https://www.investing.com/academy/statistics/microsoft-facts/
[2] https://intel471.com/blog/countering-the-problem-of-credential-theft
[3] https://darktrace.com/blog/business-email-compromise-to-mass-phishing-campaign-attack-analysis
[4] https://darktrace.com/blog/breakdown-of-a-multi-account-compromise-within-office-365
Blog
Nuvola
Darktrace Integrates Self-Learning AI with Amazon Security Lake to Support Security Investigations
.jpeg)


Darktrace has deepened its relationship with AWS by integrating its detection and response capabilities with Amazon Security Lake.
This development will allow mutual customers to seamlessly combine Darktrace AI’s bespoke understanding of their organization with the Threat Intelligence offered by other security tools, and investigate all of their alerts in one central location.
This integration will improve the value security teams get from both products, streamlining analyst workflows and improving their ability to detect and respond to the full spectrum of known and unknown cyber-threats.
How Darktrace and Amazon Security Lake augment security teams
Amazon Security Lake is a newly-released service that automatically centralizes an organization’s security data from cloud, on-premises, and custom sources into a customer owned purpose-built data lake. Both Darktrace and Amazon Security Lake support the Open Cybersecurity Schema Framework (OCSF), an open standard to simplify, combine, and analyze security logs.
Customers can store security logs, events, alerts, and other relevant data generated by various AWS services and security tools. By consolidating security data in a central lake, organizations can gain a holistic view of their security posture, perform advanced analytics, detect anomalies and open investigations to improve their security practices.
With Darktrace DETECT and RESPOND AI engines covering all assets across IT, OT, network, endpoint, IoT, email and cloud, organizations can augment the value of their security data lakes by feeding Darktrace’s rich and context-aware datapoints to Amazon Security Lake.
Amazon Security Lake empowers security teams to improve the protection of your digital estate:
- Quick and painless data normalization
- Fast-tracks ability to investigate, triage and respond to security events
- Broader visibility aids more effective decision-making
- Surfaces and prioritizes anomalies for further investigation
- Single interface for seamless data management
How will Darktrace customers benefit?
Across the Cyber AI Loop, all Darktrace solutions have been architected with AWS best practices in mind. With this integration, Darktrace is bringing together its understanding of ‘self’ for every organization with the centralized data visibility of the Amazon Security Lake. Darktrace’s unique approach to cyber security, powered by groundbreaking AI research, delivers a superior dataset based on a deep and interconnected understanding of the enterprise.
Where other cyber security solutions are trained to identify threats based on historical attack data and techniques, Darktrace DETECT gains a bespoke understanding of every digital environment, continuously analyzing users, assets, devices and the complex relationships between them. Our AI analyzes thousands of metrics to reveal subtle deviations that may signal an evolving issue – even unknown techniques and novel malware. It distinguishes between malicious and benign behavior, identifying harmful activity that typically goes unnoticed. This rich dataset is fed into RESPOND, which takes precise action to neutralize threats against any and every asset, no matter where data resides.
Both DETECT and RESPOND are supported by Darktrace Self-Learning AI, which provides full, real-time visibility into an organization’s systems and data. This always-on threat analysis already makes humans better at cyber security, improving decisions and outcomes based on total visibility of the digital ecosystem, supporting human performance with AI coverage and empowering security teams to proactively protect critical assets.
Converting Darktrace alerts to the Amazon Security Lake Open Cybersecurity Schema Framework (OCSF) supplies the Security Operations Center (SOC) and incident response team with contextualized data, empowering them to accelerate their investigation, triage and response to potential cyber threats.
Darktrace is available for purchase on the AWS Marketplace.
Learn more about how Darktrace provides full-coverage, AI-powered cloud security for AWS, or see how our customers use Darktrace in their AWS cloud environments.
