Blog

Nessun articolo trovato.

It’s All in the Timing: How to Optimize Incident Response to Conserve Resources

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Aug 2023
02
Aug 2023
When it comes to responding to an incident, bad timing wastes resources. And traditional incident response strategies make it very hard to get the timing right. With Darktrace HEAL, organizations can now identify and address critical events faster and more efficiently to save security teams time, money, and effort.

Finding balance with a cyber incident response plan 

When it comes to responding to an incident, bad timing wastes resources. And traditional incident response strategies paired with traditional detection tools make it very hard to get the timing right. 

If an organization starts recovery efforts too early, it can start acting on events that turn out to be benign. This leads to wasted resources. 

If an organization starts recovery too late, it can end up letting attacks continue so that the issues become more widespread and complex, which then require more resources to remedy and can have larger impacts on the business.

Somewhere in between, there is an optimal stage in which the security teams are not wasting time on benign events, but in which incidents are not allowed to escalate too far. But this sweet spot is hard to ascertain, especially when detection tools are prone to false positives and more sophisticated or novel attacks often fly under the radar of signature-based tools. 

This can be illustrated graphically, with the amount of time passed until a security team activates incident response measured along the x-axis, and the amount of resources required on the y-axis. You'll notice a spike at the very beginning due to the high frequency of non-events, which eats away at resources as the security team reacts to many events that turn out to be benign.

Figure 1: Incident response has maximum efficiency when enacted not too early and not too late.
Graph for illustration purposes only.


The problem of responding to an incident too late is heightened by static incident response playbooks. Incident response playbooks are often created in ‘one-size-fits-all’ format for general attack types – you might have one for ‘ransomware’, one for ‘DDoS attacks’, and so on. They outline the necessary steps to eradicate the attack, remediate infected assets, gather evidence, communicate internally, and ultimately recover. 

While these playbooks help satisfy auditors and compliance requirements, they aren’t often used in the real world, because the reality of an attack never quite aligns with the generic parameters set out in the playbook. The playbook is static, while businesses – and the threats that target them ­– are constantly evolving. This is especially true with the rise of generative AI, which allows attackers to carry out sophisticated and innovative attacks on a large scale

In other words, every traditional playbook is outdated the day it is written. The mismatch between attacks and the playbook’s response plan puts the burden on the human team to fill in the gaps, as the human's attention moves from following step-by-step instructions to making real-time decisions. Forced to synthesize the entire event under stressful circumstances, often with limited information, they begin to deviate further and further from the playbooks, rendering them less and less relevant. 

By responding only to genuine security incidents, and initiating actions before those incidents become a crisis, security teams reduce the amount of resources required. But this is only possible with accurate detections and investigative tools that give you all the information you need on a silver platter. 

Using AI for faster and more efficient incident response 

With Darktrace HEAL™, defenders can now initiate incident response earlier, during the optimal window of time. AI technology learns from your business data at speed and scale to identify and investigate events in real time and determine what activity requires attention. It automatically connects the dots between individual unusual events DETECT alerts to look for wider security incidents, which are then subject to HEAL’s recovery capabilities.

HEAL uses this data to enable security teams to address emerging critical incidents earlier, while eliminating unnecessary time and effort spent on irrelevant events. By lowering the threshold for activating incident response and using automation, organizations can make earlier and more informed decisions, resulting in swifter and less resource-intensive recovery.

Two things now happen to our graph. First, the entire curve shifts downwards due to better tooling. The security team now benefits from automation, bespoke AI-generated playbooks, and integrations, and as a result, the amount of resources required drops at every stage of the curve. Secondly, the sweet spot previously unattainable to incident responders due to inaccurate detection and stringent incident response activation policies, becomes achievable.

Figure 2: With Darktrace HEAL, incident response can be enacted earlier, and using fewer resources.
Graph for illustration purposes only.


Bespoke playbooks accelerate recovery

HEAL automates several steps of the recovery process to accelerate the rate of incident response. It creates bespoke, AI-generated incident response playbooks that leverage an evolving understanding of the organization to determine recovery steps that are tailored to the specific incident and the environment it takes place in. For example, a cloud migration may introduce new architecture that a traditional, static playbook may not consider but HEAL does. 

These bespoke playbooks can keep up with changes in both the business and the threat landscape by using Self-Learning AI, which is trained on the organization’s specific data and continuously updates its understanding of the business. As a result of this tailored AI learning, these playbooks can facilitate more efficient incident response during and after an incident by taking relevant actions and not over-responding.

The AI also prioritizes the order of remediation actions based on factors like further damage, how much the attack relies on the specific asset as a pivot or entry point, and if RESPOND has contained the asset's unwanted activity temporarily.

HEAL’s bespoke playbooks apply both in the case of critical incidents that need quick eradication and recovery as well as during day-to-day triage of any emerging incidents. With bespoke playbooks, organizations can tick the compliance box while also having real-world, practical value. 

Incident response made simple

Traditionally, organizations struggle to find the sweet spot between responding to incidents too early and too late, increasing the chance that they will waste resources or even face reputational or financial issues. 

With HEAL, organizations can now identify and address critical events more effectively. The AI technology uses enhanced detection capabilities to surface significant incidents early without wasting time and effort on irrelevant events. Leveraging bespoke, AI-generated playbooks further streamlines recovery by ensuring applicable recovery plans. 

By adjusting the timing of incident response, HEAL uses accurate detection and swift recovery to save security teams time, money, and effort.

HEAL is the final stage of Darktrace’s Cyber AI Loop, an interconnected security ecosystem that helps defenders at every stage of an attack lifecycle. AI outputs flow between each product – Darktrace PREVENT™, Darktrace DETECT™, Darktrace RESPOND™, and HEAL – to continuously and autonomously harden security. 

Figure 3: The Cyber AI Loop is a virtuous cycle in which Darktrace products amplify each other by sharing AI outputs.
INSIDE THE SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
AUTHOR
ABOUT ThE AUTHOR
Dan Fein
Vicepresidente, Prodotto

Based in New York, Dan joined Darktrace’s technical team in 2015, helping customers quickly achieve a complete and granular understanding of Darktrace’s product suite. Dan has a particular focus on Darktrace/Email, ensuring that it is effectively deployed in complex digital environments, and works closely with the development, marketing, sales, and technical teams. Dan holds a Bachelor’s degree in Computer Science from New York University.

Book a 1-1 meeting with one of our experts
share this article
USE CASES
Nessun articolo trovato.
COre coverage
Nessun articolo trovato.

More in this series

Nessun articolo trovato.

Blog

Email

How to Protect your Organization Against Microsoft Teams Phishing Attacks

Default blog imageDefault blog image
21
May 2024

The problem: Microsoft Teams phishing attacks are on the rise

Around 83% of Fortune 500 companies rely on Microsoft Office products and services1, with Microsoft Teams and Microsoft SharePoint in particular emerging as critical platforms to the business operations of the everyday workplace. Researchers across the threat landscape have begun to observe these legitimate services being leveraged more and more by malicious actors as an initial access method.

As Teams becomes a more prominent feature of the workplace many employees rely on it for daily internal and external communication, even surpassing email usage in some organizations. As Microsoft2 states, "Teams changes your relationship with email. When your whole group is working in Teams, it means you'll all get fewer emails. And you'll spend less time in your inbox, because you'll use Teams for more of your conversations."

However, Teams can be exploited to send targeted phishing messages to individuals either internally or externally, while appearing legitimate and safe. Users might receive an external message request from a Teams account claiming to be an IT support service or otherwise affiliated with the organization. Once a user has accepted, the threat actor can launch a social engineering campaign or deliver a malicious payload. As a primarily internal tool there is naturally less training and security awareness around Teams – due to the nature of the channel it is assumed to be a trusted source, meaning that social engineering is already one step ahead.

Screenshot of a Microsoft Teams message request from a Midnight Blizzard-controlled account (courtesy of Microsoft)
Figure 1: Screenshot of a Microsoft Teams message request from a Midnight Blizzard-controlled account (courtesy of Microsoft)

Microsoft Teams Phishing Examples

Microsoft has identified several major phishing attacks using Teams within the past year.

In July 2023, Microsoft announced that the threat actor known as Midnight Blizzard – identified by the United States as a Russian state-sponsored group – had launched a series of phishing campaigns via Teams with the aim of stealing user credentials. These attacks used previously compromised Microsoft 365 accounts and set up new domain names that impersonated legitimate IT support organizations. The threat actors then used social engineering tactics to trick targeted users into sharing their credentials via Teams, enabling them to access sensitive data.  

At a similar time, threat actor Storm-0324 was observed sending phishing lures via Teams containing links to malicious SharePoint-hosted files. The group targeted organizations that allow Teams users to interact and share files externally. Storm-0324’s goal is to gain initial access to hand over to other threat actors to pursue more dangerous follow-on attacks like ransomware.

For a more in depth look at how Darktrace stops Microsoft Teams phishing read our blog: Don’t Take the Bait: How Darktrace Keeps Microsoft Teams Phishing Attacks at Bay

The market: Existing Microsoft Teams security solutions are insufficient

Microsoft’s native Teams security focuses on payloads, namely links and attachments, as the principal malicious component of any phishing. These payloads are relatively straightforward to detect with their experience in anti-virus, sandboxing, and IOCs. However, this approach is unable to intervene before the stage at which payloads are delivered, before the user even gets the chance to accept or deny an external message request. At the same time, it risks missing more subtle threats that don’t include attachments or links – like early stage phishing, which is pure social engineering – or completely new payloads.

Equally, the market offering for Teams security is limited. Security solutions available on the market are always payload-focused, rather than taking into account the content and context in which a link or attachment is sent. Answering questions like:

  • Does it make sense for these two accounts to speak to each other?
  • Are there any linguistic indicators of inducement?

Furthermore, they do not correlate with email to track threats across multiple communication environments which could signal a wider campaign. Effectively, other market solutions aren’t adding extra value – they are protecting against the same types of threats that Microsoft is already covering by default.

The other aspect of Teams security that native and market solutions fail to address is the account itself. As well as focusing on Teams threats, it’s important to analyze messages to understand the normal mode of communication for a user, and spot when a user’s Teams activity might signal account takeover.

The solution: How Darktrace protects Microsoft Teams against sophisticated threats

With its biggest update to Darktrace/Email ever, Darktrace now offers support for Microsoft Teams. With that, we are bringing the same AI philosophy that protects your email and accounts to your messaging environment.  

Our Self-Learning AI looks at content and context for every communication, whether that’s sent in an email or Teams message. It looks at actual user behavior, including language patterns, relationship history of sender and recipient, tone and payloads, to understand if a message poses a threat. This approach allows Darktrace to detect threats such as social engineering and payloadless attacks using visibility and forensic capabilities that Microsoft security doesn’t currently offer, as well as early symptoms of account compromise.  

Unlike market solutions, Darktrace doesn’t offer a siloed approach to Teams security. Data and signals from Teams are shared across email to inform detection, and also with the wider Darktrace ActiveAI security platform. By correlating information from email and Teams with network and apps security, Darktrace is able to better identify suspicious Teams activity and vice versa.  

Interested in the other ways Darktrace/Email augments threat detection? Read our latest blog on how improving the quality of end-user reporting can decrease the burden on the SOC. To find our more about Darktrace's enduring partnership with Microsoft, click here.

References

[1] Essential Microsoft Office Statistics in 2024

[2] Microsoft blog, Microsoft Teams and email, living in harmony, 2024

Continue reading
About the author
Carlos Gray
Product Manager

Blog

Inside the SOC

Don’t Take the Bait: How Darktrace Keeps Microsoft Teams Phishing Attacks at Bay

Default blog imageDefault blog image
20
May 2024

Social Engineering in Phishing Attacks

Faced with increasingly cyber-aware endpoint users and vigilant security teams, more and more threat actors are forced to think psychologically about the individuals they are targeting with their phishing attacks. Social engineering methods like taking advantage of the human emotions of their would-be victims, pressuring them to open emails or follow links or face financial or legal repercussions, and impersonating known and trusted brands or services, have become common place in phishing campaigns in recent years.

Phishing with Microsoft Teams

The malicious use of the popular communications platform Microsoft Teams has become widely observed and discussed across the threat landscape, with many organizations adopting it as their primary means of business communication, and many threat actors using it as an attack vector. As Teams allows users to communicate with people outside of their organization by default [1], it becomes an easy entry point for potential attackers to use as a social engineering vector.

In early 2024, Darktrace/Apps™ identified two separate instances of malicious actors using Microsoft Teams to launch a phishing attack against Darktrace customers in the Europe, the Middle East and Africa (EMEA) region. Interestingly, in this case the attackers not only used a well-known legitimate service to carry out their phishing campaign, but they were also attempting to impersonate an international hotel chain.

Despite these attempts to evade endpoint users and traditional security measures, Darktrace’s anomaly detection enabled it to identify the suspicious phishing messages and bring them to the customer’s attention. Additionally, Darktrace’s autonomous response capability, was able to follow-up these detections with targeted actions to contain the suspicious activity in the first instance.

Darktrace Coverage of Microsoft Teams Phishing

Chats Sent by External User and Following Actions by Darktrace

On February 29, 2024, Darktrace detected the presence of a new external user on the Software-as-a-Service (SaaS) environment of an EMEA customer for the first time. The user, “REDACTED@InternationalHotelChain[.]onmicrosoft[.]com” was only observed on this date and no further activities were detected from this user after February 29.

Later the same day, the unusual external user created its first chat on Microsoft Teams named “New Employee Loyalty Program”. Over the course of around 5 minutes, the user sent 63 messages across 21 different chats to unique internal users on the customer’s SaaS platform. All these chats included the ‘foreign tenant user’ and one of the customer’s internal users, likely in an attempt to remain undetected. Foreign tenant user, in this case, refers to users without access to typical internal software and privileges, indicating the presence of an external user.

Darktrace’s detection of unusual messages being sent by a suspicious external user via Microsoft Teams.
Figure 1: Darktrace’s detection of unusual messages being sent by a suspicious external user via Microsoft Teams.
Advanced Search results showing the presence of a foreign tenant user on the customer’s SaaS environment.
Figure 2: Advanced Search results showing the presence of a foreign tenant user on the customer’s SaaS environment.

Darktrace identified that the external user had connected from an unusual IP address located in Poland, 195.242.125[.]186. Darktrace understood that this was unexpected behavior for this user who had only previously been observed connecting from the United Kingdom; it further recognized that no other users within the customer’s environment had connected from this external source, thereby deeming it suspicious. Further investigation by Darktrace’s analyst team revealed that the endpoint had been flagged as malicious by several open-source intelligence (OSINT) vendors.

External Summary highlighting the rarity of the rare external source from which the Teams messages were sent.
Figure 3: External Summary highlighting the rarity of the rare external source from which the Teams messages were sent.

Following Darktrace’s initial detection of these suspicious Microsoft Teams messages, Darktrace's autonomous response was able to further support the customer by providing suggested mitigative actions that could be applied to stop the external user from sending any additional phishing messages.

Unfortunately, at the time of this attack Darktrace's autonomous response capability was configured in human confirmation mode, meaning any autonomous response actions had to be manually actioned by the customer. Had it been enabled in autonomous response mode, it would have been able promptly disrupt the attack, disabling the external user to prevent them from continuing their phishing attempts and securing precious time for the customer’s security team to begin their own remediation procedures.

Darktrace autonomous response actions that were suggested following the ’Large Volume of Messages Sent from New External User’ detection model alert.
Figure 4: Darktrace autonomous response actions that were suggested following the ’Large Volume of Messages Sent from New External User’ detection model alert.

External URL Sent within Teams Chats

Within the 21 Teams chats created by the threat actor, Darktrace identified 21 different external URLs being sent, all of which included the domain "cloud-sharcpoint[.]com”. Many of these URLs had been recently established and had been flagged as malicious by OSINT providers [3]. This was likely an attempt to impersonate “cloud-sharepoint[.]com”, the legitimate domain of Microsoft SharePoint, with the threat actor attempting to ‘typo-squat’ the URL to convince endpoint users to trust the legitimacy of the link. Typo-squatted domains are commonly misspelled URLs registered by opportunistic attackers in the hope of gaining the trust of unsuspecting targets. They are often used for nefarious purposes like dropping malicious files on devices or harvesting credentials.

Upon clicking this malicious link, users were directed to a similarly typo-squatted domain, “InternatlonalHotelChain[.]sharcpoInte-docs[.]com”. This domain was likely made to appear like the SharePoint URL used by the international hotel chain being impersonated.

Redirected link to a fake SharePoint page attempting to impersonate an international hotel chain.
Figure 5: Redirected link to a fake SharePoint page attempting to impersonate an international hotel chain.

This fake SharePoint page used the branding of the international hotel chain and contained a document named “New Employee Loyalty Program”; the same name given to the phishing messages sent by the attacker on Microsoft Teams. Upon accessing this file, users would be directed to a credential harvester, masquerading as a Microsoft login page, and prompted to enter their credentials. If successful, this would allow the attacker to gain unauthorized access to a user’s SaaS account, thereby compromising the account and enabling further escalation in the customer’s environment.

Figure 6: A fake Microsoft login page that popped-up when attempting to open the ’New Employee Loyalty Program’ document.

This is a clear example of an attacker attempting to leverage social engineering tactics to gain the trust of their targets and convince them to inadvertently compromise their account. Many corporate organizations partner with other companies and well-known brands to offer their employees loyalty programs as part of their employment benefits and perks. As such, it would not necessarily be unexpected for employees to receive such an offer from an international hotel chain. By impersonating an international hotel chain, threat actors would increase the probability of convincing their targets to trust and click their malicious messages and links, and unintentionally compromising their accounts.

In spite of the attacker’s attempts to impersonate reputable brands, platforms, Darktrace/Apps was able to successfully recognize the malicious intent behind this phishing campaign and suggest steps to contain the attack. Darktrace recognized that the user in question had deviated from its ‘learned’ pattern of behavior by connecting to the customer’s SaaS environment from an unusual external location, before proceeding to send an unusually large volume of messages via Teams, indicating that the SaaS account had been compromised.

A Wider Campaign?

Around a month later, in March 2024, Darktrace observed a similar incident of a malicious actor impersonating the same international hotel chain in a phishing attacking using Microsoft Teams, suggesting that this was part of a wider phishing campaign. Like the previous example, this customer was also based in the EMEA region.  

The attack tactics identified in this instance were very similar to the previously example, with a new external user identified within the network proceeding to create a series of Teams messages named “New Employee Loyalty Program” containing a typo-squatted external links.

There were a few differences with this second incident, however, with the attacker using the domain “@InternationalHotelChainExpeditions[.]onmicrosoft[.]com” to send their malicious Teams messages and using differently typo-squatted URLs to imitate Microsoft SharePoint.

As both customers targeted by this phishing campaign were subscribed to Darktrace’s Proactive Threat Notification (PTN) service, this suspicious SaaS activity was promptly escalated to the Darktrace Security Operations Center (SOC) for immediate triage and investigation. Following their investigation, the SOC team sent an alert to the customers informing them of the compromise and advising urgent follow-up.

Conclusion

While there are clear similarities between these Microsoft Teams-based phishing attacks, the attackers here have seemingly sought ways to refine their tactics, techniques, and procedures (TTPs), leveraging new connection locations and creating new malicious URLs in an effort to outmaneuver human security teams and conventional security tools.

As cyber threats grow increasingly sophisticated and evasive, it is crucial for organizations to employ intelligent security solutions that can see through social engineering techniques and pinpoint suspicious activity early.

Darktrace’s Self-Learning AI understands customer environments and is able to recognize the subtle deviations in a device’s behavioral pattern, enabling it to effectively identify suspicious activity even when attackers adapt their strategies. In this instance, this allowed Darktrace to detect the phishing messages, and the malicious links contained within them, despite the seemingly trustworthy source and use of a reputable platform like Microsoft Teams.

Credit to Min Kim, Cyber Security Analyst, Raymond Norbert, Cyber Security Analyst and Ryan Traill, Threat Content Lead

Appendix

Darktrace Model Detections

SaaS Model

Large Volume of Messages Sent from New External User

SaaS / Unusual Activity / Large Volume of Messages Sent from New External User

Indicators of Compromise (IoCs)

IoC – Type - Description

https://cloud-sharcpoint[.]com/[a-zA-Z0-9]{15} - Example hostname - Malicious phishing redirection link

InternatlonalHotelChain[.]sharcpolnte-docs[.]com – Hostname – Redirected Link

195.242.125[.]186 - External Source IP Address – Malicious Endpoint

MITRE Tactics

Tactic – Technique

Phishing – Initial Access (T1566)

References

[1] https://learn.microsoft.com/en-us/microsoftteams/trusted-organizations-external-meetings-chat?tabs=organization-settings

[2] https://www.virustotal.com/gui/ip-address/195.242.125.186/detection

[3] https://www.virustotal.com/gui/domain/cloud-sharcpoint.com

Continue reading
About the author
Min Kim
Cyber Security Analyst
Our ai. Your data.

Elevate your cyber defenses with Darktrace AI

Iniziare la prova gratuita
Darktrace AI protecting a business from cyber threats.